Search results

1 – 10 of 107
Open Access
Article
Publication date: 6 August 2019

Anton Wiberg, Johan Persson and Johan Ölvander

This paper aims to review recent research in design for additive manufacturing (DfAM), including additive manufacturing (AM) terminology, trends, methods, classification of DfAM…

16576

Abstract

Purpose

This paper aims to review recent research in design for additive manufacturing (DfAM), including additive manufacturing (AM) terminology, trends, methods, classification of DfAM methods and software. The focus is on the design engineer’s role in the DfAM process and includes which design methods and tools exist to aid the design process. This includes methods, guidelines and software to achieve design optimization and in further steps to increase the level of design automation for metal AM techniques. The research has a special interest in structural optimization and the coupling between topology optimization and AM.

Design/methodology/approach

The method used in the review consists of six rounds in which literature was sequentially collected, sorted and removed. Full presentation of the method used could be found in the paper.

Findings

Existing DfAM research has been divided into three main groups – component, part and process design – and based on the review of existing DfAM methods, a proposal for a DfAM process has been compiled. Design support suitable for use by design engineers is linked to each step in the compiled DfAM process. Finally, the review suggests a possible new DfAM process that allows a higher degree of design automation than today’s process. Furthermore, research areas that need to be further developed to achieve this framework are pointed out.

Originality/value

The review maps existing research in design for additive manufacturing and compiles a proposed design method. For each step in the proposed method, existing methods and software are coupled. This type of overall methodology with connecting methods and software did not exist before. The work also contributes with a discussion regarding future design process and automation.

Details

Rapid Prototyping Journal, vol. 25 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 27 July 2022

Yuchuan Du, Han Wang, Qian Gao, Ning Pan, Cong Zhao and Chenglong Liu

Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all…

1708

Abstract

Purpose

Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all modes. A robust transportation resilience is a goal in pursuing transportation sustainability. Under this specified context, while before the perturbations, robustness refers to the degree of the system’s capability of functioning according to its design specifications on integrated modes and routes, redundancy is the degree of duplication of traffic routes and alternative modes to maintain persistency of service in case of perturbations. While after the perturbations, resourcefulness refers to the capacity to identify operational problems in the system, prioritize interventions and mobilize necessary material/ human resources to recover all the routes and modes, rapidity is the speed of complete recovery of all modes and traffic routes in the urban area. These “4R” are the most critical components of urban integrated resilience.

Design/methodology/approach

The trends of transportation resilience's connotation, metrics and strategies are summarized from the literature. A framework is introduced on both qualitative characteristics and quantitative metrics of transportation resilience. Using both model-based and mode-free methodologies that measure resilience in attributes, topology and system performance provides a benchmark for evaluating the mechanism of resilience changes during the perturbation. Correspondingly, different pre-perturbation and post-perturbation strategies for enhancing resilience under multi-mode scenarios are reviewed and summarized.

Findings

Cyber-physic transportation system (CPS) is a more targeted solution to resilience issues in transportation. A well-designed CPS can be applied to improve transport resilience facing different perturbations. The CPS ensures the independence and integrity of every child element within each functional zone while reacting rapidly.

Originality/value

This paper provides a more comprehensive understanding of transportation resilience in terms of integrated urban transport. The fundamental characteristics and strategies for resilience are summarized and elaborated. As little research has shed light on the resilience concepts in integrated urban transport, the findings from this paper point out the development trend of a resilient transportation system for digital and data-driven management.

Details

Smart and Resilient Transportation, vol. 4 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 6 November 2018

Matthijs Langelaar

The purpose of this paper is to communicate a method to perform simultaneous topology optimization of component and support structures considering typical metal additive…

1910

Abstract

Purpose

The purpose of this paper is to communicate a method to perform simultaneous topology optimization of component and support structures considering typical metal additive manufacturing (AM) restrictions and post-print machining requirements.

Design/methodology/approach

An integrated topology optimization is proposed using two density fields: one describing the design and another defining the support layout. Using a simplified AM process model, critical overhang angle restrictions are imposed on the design. Through additional load cases and constraints, sufficient stiffness against subtractive machining loads is enforced. In addition, a way to handle non-design regions in an AM setting is introduced.

Findings

The proposed approach is found to be effective in producing printable optimized geometries with adequate stiffness against machining loads. It is shown that post-machining requirements can affect optimal support structure layout.

Research limitations/implications

This study uses a simplified AM process model based on geometrical characteristics. A challenge remains to integrate more detailed physical AM process models to have direct control of stress, distortion and overheating.

Practical implications

The presented method can accelerate and enhance the design of high performance parts for AM. The consideration of post-print aspects is expected to reduce the need for design adjustments after optimization.

Originality/value

The developed method is the first to combine AM printability and machining loads in a single topology optimization process. The formulation is general and can be applied to a wide range of performance and manufacturability requirements.

Open Access
Article
Publication date: 7 March 2023

Solomon O. Obadimu and Kyriakos I. Kourousis

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the…

1210

Abstract

Purpose

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the honeycomb structure. However, research on in-plane compressive performance of both classical and new types of honeycombs fabricated via AM is still ongoing. Several important findings have emerged over the past years, with significance for the AM community and a review is considered necessary and timely. This paper aims to review the in-plane compressive performance of AM honeycomb structures.

Design/methodology/approach

This paper provides a state-of-the-art review focussing on the in-plane compressive performance of AM honeycomb structures, covering both polymers and metals. Recently published studies, over the past six years, have been reviewed under the specific theme of in-plane compression properties.

Findings

The key factors influencing the AM honeycombs' in-plane compressive performance are identified, namely the geometrical features, such as topology shape, cell wall thickness, cell size and manufacturing parameters. Moreover, the techniques and configurations commonly used for geometry optimisation toward improving mechanical performance are discussed in detail. Current AM limitations applicable to AM honeycomb structures are identified and potential future directions are also discussed in this paper.

Originality/value

This work evaluates critically the primary results and findings from the published research literature associated with the in-plane compressive mechanical performance of AM honeycombs.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 14 October 2021

Anton Wiberg, Johan Persson and Johan Ölvander

The purpose of this paper is to present a Design for Additive Manufacturing (DfAM) methodology that connects several methods, from geometrical design to post-process selection…

1911

Abstract

Purpose

The purpose of this paper is to present a Design for Additive Manufacturing (DfAM) methodology that connects several methods, from geometrical design to post-process selection, into a common optimisation framework.

Design/methodology/approach

A design methodology is formulated and tested in a case study. The outcome of the case study is analysed by comparing the obtained results with alternative designs achieved by using other design methods. The design process in the case study and the potential of the method to be used in different settings are also discussed. Finally, the work is concluded by stating the main contribution of the paper and highlighting where further research is needed.

Findings

The proposed method is implemented in a novel framework which is applied to a physical component in the case study. The component is a structural aircraft part that was designed to minimise weight while respecting several static and fatigue structural load cases. An addition goal is to minimise the manufacturing cost. Designs optimised for manufacturing by two different AM machines (EOS M400 and Arcam Q20+), with and without post-processing (centrifugal finishing) are considered. The designs achieved in this study show a significant reduction in both weight and cost compared to one AM manufactured geometry designed using more conventional methods and one design milled in aluminium.

Originality/value

The method in this paper allows for the holistic design and optimisation of components while considering manufacturability, cost and component functionality. Within the same framework, designs optimised for different setups of AM machines and post-processing can be automatically evaluated without any additional manual work.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 4 December 2023

Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Abstract

Purpose

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Design/methodology/approach

Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.

Findings

The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.

Originality/value

The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 28 August 2021

Luca Gabriele De Vivo Nicoloso, Joshua Pelz, Herb Barrack and Falko Kuester

There are over 40 million amputees globally with more than 185,000 Americans losing their limbs every year. For most of the world, prosthetic devices remain too expensive and…

2806

Abstract

Purpose

There are over 40 million amputees globally with more than 185,000 Americans losing their limbs every year. For most of the world, prosthetic devices remain too expensive and uncomfortable. This paper aims to outline advancements made by a multidisciplinary research group, interested in advancing the restoration of human motion through accessible lower limb prostheses.

Design/methodology/approach

Customization, comfort and functionality are the most important metrics reported by prosthetists and patients. The work of this paper presents the design and manufacturing of a custom made, cost-effective and functional three-dimensional (3D) printed transtibial prosthesis monocoque design. The design of the prosthesis integrates 3D imaging, modelling and optimization techniques coupled with additive manufacturing.

Findings

The successful fabrication of a functional monocoque prosthesis through 3D printing indicates the workflow may be a solution to the worldwide accessibility crisis. The digital workflow developed in this work offers great potential for providing prosthetic devices to rural communities, which lack access to skilled prosthetic physicians. The authors found that using the workflow together with 3D printing, this study can create custom monocoque prostheses (Figure 16). These prostheses are comfortable, functional and properly aligned. In comparison with traditional prosthetic devices, the authors slowered the average cost, weight and time of production by 95%, 55% and 95%, respectively.

Social implications

This novel digital design and manufacturing workflow has the potential to democratize and globally proliferate access to prosthetic devices, which restore the patient’s mobility, quality of life and health. LIMBER’s toolbox can reach places where proper prosthetic and orthotic care is not available. The digital workflow reduces the cost of making custom devices by an order of magnitude, enabling broader reach, faster access and improved comfort. This is particularly important for children who grow quickly and need new devices every few months or years, timely access is both physically and psychologically important.

Originality/value

In this manuscript, the authors show the application of digital design techniques for fabricating prosthetic devices. The proposed workflow implements several advantageous changes and, most importantly, digitally blends the three components of a transtibial prosthesis into a single, 3D printable monocoque device. The development of a novel unibody transtibial device that is properly aligned and adjusted digitally, greatly reduces the number of visits an amputee must make to a clinic to have a certified prosthetist adjust and modify their prosthesis. The authors believe this novel workflow has the potential to ease the worldwide accessibility crisis for prostheses.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 3 June 2022

Peter Gangl, Stefan Köthe, Christiane Mellak, Alessio Cesarano and Annette Mütze

This paper aims to deal with the design optimization of a synchronous reluctance machine to be used in an X-ray tube, where the goal is to maximize the torque while keeping low…

Abstract

Purpose

This paper aims to deal with the design optimization of a synchronous reluctance machine to be used in an X-ray tube, where the goal is to maximize the torque while keeping low the amount of material used, by means of gradient-based free-form shape optimization.

Design/methodology/approach

The presented approach is based on the mathematical concept of shape derivatives and allows to obtain new motor designs without the need to introduce a geometric parametrization. This paper presents an extension of a standard gradient-based free-form shape optimization algorithm to the case of multiple objective functions by determining updates, which represent a descent of all involved criteria. Moreover, this paper illustrates a way to obtain an approximate Pareto front.

Findings

The presented method allows to obtain optimal designs of arbitrary, non-parametric shape with very low computational cost. This paper validates the results by comparing them to a parametric geometry optimization in JMAG by means of a stochastic optimization algorithm. While the obtained designs are of similar shape, the computational time used by the gradient-based algorithm is in the order of minutes, compared to several hours taken by the stochastic optimization algorithm.

Originality/value

This paper applies the presented gradient-based multi-objective optimization algorithm in the context of free-form shape optimization using the mathematical concept of shape derivatives. The authors obtain a set of Pareto-optimal designs, each of which is a shape that is not represented by a fixed set of parameters. To the best of the authors’ knowledge, this approach to multi-objective free-form shape optimization is novel in the context of electric machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 27 July 2022

Sami Barmada, Alessandro Formisano, Dimitri Thomopulos and Mauro Tucci

This study aims to investigate the possible use of a deep neural network (DNN) as an inverse solver.

Abstract

Purpose

This study aims to investigate the possible use of a deep neural network (DNN) as an inverse solver.

Design/methodology/approach

Different models based on DNNs are designed and proposed for the resolution of inverse electromagnetic problems either as fast solvers for the direct problem or as straightforward inverse problem solvers, with reference to the TEAM 25 benchmark problem for the sake of exemplification.

Findings

Using DNNs as straightforward inverse problem solvers has relevant advantages in terms of promptness but requires a careful treatment of the underlying problem ill-posedness.

Originality/value

This work is one of the first attempts to exploit DNNs for inverse problem resolution in low-frequency electromagnetism. Results on the TEAM 25 test problem show the potential effectiveness of the approach but also highlight the need for a careful choice of the training data set.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 29 July 2019

Ren Yang, Qi Song and Pu Chen

The purpose of this paper is to establish and implement a direct topological reanalysis algorithm for general successive structural modifications, based on the updating matrix…

Abstract

Purpose

The purpose of this paper is to establish and implement a direct topological reanalysis algorithm for general successive structural modifications, based on the updating matrix triangular factorization (UMTF) method for non-topological modification proposed by Song et al. [Computers and Structures, 143(2014):60-72].

Design/methodology/approach

In this method, topological modifications are viewed as a union of symbolic and numerical change of structural matrices. The numerical part is dealt with UMTF by directly updating the matrix triangular factors. For symbolic change, an integral structure which consists of all potential nodes/elements is introduced to avoid side effects on the efficiency during successive modifications. Necessary pre- and post processing are also developed for memory-economic matrix manipulation.

Findings

The new reanalysis algorithm is applicable to successive general structural modifications for arbitrary modification amplitudes and locations. It explicitly updates the factor matrices of the modified structure and thus guarantees the accuracy as full direct analysis while greatly enhancing the efficiency.

Practical implications

Examples including evolutionary structural optimization and sequential construction analysis show the capability and efficiency of the algorithm.

Originality/value

This innovative paper makes direct topological reanalysis be applicable for successive structural modifications in many different areas.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Access

Only Open Access

Year

All dates (107)

Content type

1 – 10 of 107