Search results

1 – 10 of 13
Article
Publication date: 22 June 2017

Sana El Kalash and Elie Hantouche

This paper aims at developing a mechanical-based model for predicting the thermally induced axial forces and rotation of steel top and seat angles connections with and without web…

Abstract

Purpose

This paper aims at developing a mechanical-based model for predicting the thermally induced axial forces and rotation of steel top and seat angles connections with and without web angles subjected to elevated temperatures due to fire. Finite element (FE) simulations and experimental results are used to develop the mechanical model.

Design/methodology/approach

The model incorporates the overall connection and column-beam rotation of key component elements, and includes nonlinear behavior of bolts and base materials at elevated temperatures and some major geometric parameters that impact the behavior of such connections when exposed to fire. This includes load ratio, beam length, angle thickness, and gap distance. The mechanical model consists of multi-linear and nonlinear springs that predict each component stiffness, strength, and rotation.

Findings

The capability of the FE model to predict the strength of top and seat angles under fire loading was validated against full scale tests. Moreover, failure modes, temperature at failure, maximum compressive axial force, maximum rotation, and effect of web angles were all determined in the parametric study. Finally, the proposed mechanical model was validated against experimental results available in the literature and FE simulations developed as a part of this study.

Originality/value

The proposed model provides important insights into fire-induced axial forces and rotations and their implications on the design of steel bolted top and seat angle connections. The originality of the proposed mechanical model is that it requires low computational effort and can be used in more advanced modelling applications for fire analysis and design.

Details

Journal of Structural Fire Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 23 March 2012

Khalifa Al-Jabri and Farooq Al-Jahwari

This paper presents a finite element analysis procedure developed to study the behavior of a flexible end-plate connection between steel beams and a column at elevated…

Abstract

This paper presents a finite element analysis procedure developed to study the behavior of a flexible end-plate connection between steel beams and a column at elevated temperatures and generates temperature-rotation diagrams that describe the behavior of the connection. The analysis used a highly detailed three dimensional finite element model that is created using the commercial ABAQUS software. The steel connection properties are selected in a way that reflects commonly used connections in steel framed buildings.

The results of the finite element model are calibrated and compared to the results of experimental fire tests conducted on similar connections. The results show that the predicted behavior of the joints is in a good agreement with actual behavior of the joints. A regression model is developed to describe the behavior of flexible end-plate joints in fire.

Details

Journal of Structural Fire Engineering, vol. 3 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 July 2017

Amir Saedi Daryan and Mahmood Yahyai

This paper aims to predicting the behavior of welded angle connections (moment-rotation-temperature) in fire using artificial neural network 10.

Abstract

Purpose

This paper aims to predicting the behavior of welded angle connections (moment-rotation-temperature) in fire using artificial neural network 10.

Design/methodology/approach

An artificial neural networking model is described to predict the moment-rotation response of semi-rigid beam-to-column joints at elevated temperature.

Findings

Data from 47 experimental fire tests and verified finite element model are used for training and testing and validating the neural network models. The model’s predicted values are compared with actual test results. The results indicate that the models can predict the moment-rotation-temperature behavior of semi-rigid beam-to-column joints with very high accuracy. The developed model can be modified easily to investigate other parameters that influence the performance of joints in fire.

Originality/value

The results indicate that the models can predict the moment-rotation-temperature behavior of semi-rigid beam-to-column joints with very high accuracy. The developed model can be modified easily to investigate other parameters that influence the performance of joints in fire.

Details

Journal of Structural Fire Engineering, vol. 9 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 May 2023

Abbas Rezaeian, Mona Mansoori and Amin Khajehdezfuly

Top-seat angle connection is known as one of the usual uncomplicated beam-to-column joints used in steel structures. This article investigates the fire performance of welded…

Abstract

Purpose

Top-seat angle connection is known as one of the usual uncomplicated beam-to-column joints used in steel structures. This article investigates the fire performance of welded top-seat angle connections.

Design/methodology/approach

A finite element (FE) model, including nonlinear contact interactions, high-temperature properties of steel, and material and geometric nonlinearities was created for accomplishing the fire performance analysis. The FE model was verified by comparing its simulation results with test data. Using the verified model, 24 steel-framed top-seat angle connection assemblies are modeled. Parametric studies were performed employing the verified FE model to study the influence of critical factors on the performance of steel beams and their welded angle joints.

Findings

The results obtained from the parametric studies illustrate that decreasing the gap size and the top angle size and increasing the top angles thickness affect fire behavior of top-seat angle joints and decrease the beam deflection by about 16% at temperatures beyond 570 °C. Also, the fire-resistance rating of the beam with seat angle stiffener increases about 15%, compared to those with and without the web stiffener. The failure of the beam happens when the deflections become more than span/30 at temperatures beyond 576 °C. Results also show that load type, load ratio and axial stiffness levels significantly control the fire performance of the beam with top-seat angle connections in semi-rigid steel frames.

Originality/value

Development of design methodologies for these joints and connected beam in fire conditions is delayed by current building codes due to the lack of adequate understanding of fire behavior of steel beams with welded top-seat angle connections.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 10 July 2023

Qian Wang, Biao Ma, Liang Yu, Man Chen, Guoyu Wang and Liangjie Zheng

This paper aims to explore the influence of applied pressure on the tribological properties of the friction component in a wet multi-disc clutch during the running-in process.

Abstract

Purpose

This paper aims to explore the influence of applied pressure on the tribological properties of the friction component in a wet multi-disc clutch during the running-in process.

Design/methodology/approach

The running-in evolutionary was explored in terms of global friction performance. The variation of friction torque and mean COF of the initial 300 engagement cycles was obtained by full-scale tests. Finally, an optical microscope was used to detect the wear characteristics of friction surfaces.

Findings

The applied pressure showed a significant influence on the tribological behaviors of wet clutches during the running-in process. The mean COF decreased and then increases with the increase of the applied pressure. A higher applied pressure contributed to more asperity summits being sheared, thus resulting in a smoother surface. Considering a suitable wore performance, properly applied pressure is necessary.

Originality/value

The results provide theoretical guidance for selecting the optimal applied pressure in the running-in of wet clutches.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2022-0256/

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 March 2024

Hesam Ketabdari, Amir Saedi Daryan, Nemat Hassani and Mohammad Safi

In this paper, the seismic behavior of the gusset plate moment connection (GPMC) exposed to the post-earthquake fire (PEF) is investigated.

Abstract

Purpose

In this paper, the seismic behavior of the gusset plate moment connection (GPMC) exposed to the post-earthquake fire (PEF) is investigated.

Design/methodology/approach

For this purpose, for the sake of verification, first, a numerical model is built using ABAQUS software and then exposed to earthquakes and high temperatures. Afterward, the effects of a series of parameters, such as gusset plate thickness, gap width, steel grade, vertical load value and presence of the stiffeners, are evaluated on the behavior of the connection in the PEF conditions.

Findings

Based on the results obtained from the parametric study, all parameters effectively played a role against the seismic loads, although, when exposed to fire, it was found that the vertical load value and presence of the stiffener revealed a great contribution and the other parameters could not significantly affect the connection performance. Finally, to develop the modeling and further study the performance of the connection, the 4 and 8-story frames are subjected to 11 accelerograms and 3 different fire scenarios. The findings demonstrate that high temperatures impose rotations on the structure, such that the story drifts were changed compared to the post-earthquake drift values.

Originality/value

The obtained results can be used by engineers to design the GPMC for the combined action of earthquake and fire.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 15 September 2017

Vijay Chawla, Sanjeev Ahuja and Varsha Rani

The purpose of this paper is to study the fundamental solution in transversely isotropic micropolar thermoelastic media. With this objective, the two-dimensional general solution…

Abstract

Purpose

The purpose of this paper is to study the fundamental solution in transversely isotropic micropolar thermoelastic media. With this objective, the two-dimensional general solution in transversely isotropic thermoelastic media is derived.

Design/methodology/approach

On the basis of the general solution, the fundamental solution for a steady point heat source on the surface of a semi-infinite transversely isotropic micropolar thermoelastic material is constructed by six newly introduced harmonic functions.

Findings

The components of displacement, stress, temperature distribution and couple stress are expressed in terms of elementary functions. From the present investigation, a special case of interest is also deduced and compared with the previous results obtained.

Practical implications

Fundamental solutions can be used to construct many analytical solutions of practical problems when boundary conditions are imposed. They are essential in the boundary element method as well as the study of cracks, defects and inclusions.

Originality/value

Fundamental solutions for a steady point heat source acting on the surface of a micropolar thermoelastic material is obtained by seven newly introduced harmonic functions. From the present investigation, some special cases of interest are also deduced.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 October 2016

Sudesh Prabhakaran, Vikneswaran Nair and Sridar Ramachandran

Waste in the marine environment has become a serious task to be managed. Uncontrolled dumping creates large amounts of methane gas contributing to greenhouse gas emissions. This…

809

Abstract

Purpose

Waste in the marine environment has become a serious task to be managed. Uncontrolled dumping creates large amounts of methane gas contributing to greenhouse gas emissions. This conceptual paper focuses on the role of community in waste management activities to reduce carbon emissions in the marine environment. Hence, this paper aims to examine using literature, the various roles of community, types of marine waste and its impact on carbon emissions and climate change.

Design/methodology/approach

The paper is based on evaluation and criticism from previous studies and provides a hypothetical understanding of the human contribution to climate change, and its impacts which will increasingly affect climate change and sustainable tourism.

Findings

The results from this study can be used as a guide for policy makers to help improve community participation and public engagement in efforts to reduce the levels of waste in the marine environment. This is especially critical in rural tourism destinations where the impact of uncontrolled marine waste has serious consequences for the tourism industry.

Originality/value

The paper contributes to a better understanding of the role of community in mitigating waste to attain a higher quality of tourism experience and environmental benefits from emission level reductions.

Details

Worldwide Hospitality and Tourism Themes, vol. 8 no. 5
Type: Research Article
ISSN: 1755-4217

Keywords

Article
Publication date: 1 February 1989

D.J. Mobbs and D. Summerhayes

Sensor Review publishes the results of a major sensor survey.

Abstract

Sensor Review publishes the results of a major sensor survey.

Details

Sensor Review, vol. 9 no. 2
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 7 December 2018

Tianyu Ren, Yunfei Dong, Dan Wu and Ken Chen

The purpose of this paper is to present a simple yet effective force control scheme for collaborative robots by addressing the problem of disturbance rejection in joint torque…

Abstract

Purpose

The purpose of this paper is to present a simple yet effective force control scheme for collaborative robots by addressing the problem of disturbance rejection in joint torque: inherent actuator flexibility and nonlinear friction.

Design/methodology/approach

In this paper, a joint torque controller with an extended state observer is used to decouple the joint actuators from the multi-rigid-body system of a constrained robot and compensate the motor friction. Moreover, to realize robot force control, the authors embed this controller into the impedance control framework.

Findings

Results have been given in simulations and experiments in which the proposed joint torque controller with an extended state observer can effectively estimate and compensate the total disturbance. The overall control framework is analytically proved to be stable, and further it is validated in experiments with a robot testbed.

Practical implications

With the proposed robot force controller, the robot is able to change its stiffness in real time and therefore take variable tasks without any accessories, such as the RCC or 6-DOF F/T sensor. In addition, programing by demonstration can be realized easily within the proposed framework, which makes the robot accessible to unprofessional users.

Originality/value

The main contribution of the presented work is the design of a model-free robot force controller with the ability to reject torque disturbances from robot-actuator coupling effect and motor friction, applicable for both constrained and unconstrained environments. Simulation and experiment results from a 7-DOF robot are given to show the effectiveness and robustness of the proposed controller.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 13