Search results

1 – 10 of 307
Open Access
Article
Publication date: 28 March 2022

Di Ao and Jialin Li

This study aims to propose a novel subjective assessment (SA) method for level 2 or level 2+ advanced driver assistance system (ADAS) with a customized case study in China.

1001

Abstract

Purpose

This study aims to propose a novel subjective assessment (SA) method for level 2 or level 2+ advanced driver assistance system (ADAS) with a customized case study in China.

Design/methodology/approach

The proposed SA method contains six dimensions, including perception, driveability and stability, riding comfort, human–machine interaction, driver workload and trustworthiness and exceptional operating case, respectively. And each dimension subordinates several subsections, which describe the corresponding details under this dimension.

Findings

Based on the proposed SA, a case study in China is conducted. Six drivers with different driving experiences are invited to give their subjective ratings for each subsection according to a predefined rating standard. The rating results show that the ADAS from Tesla outperforms the upcoming electric vehicle in most cases.

Originality/value

The proposed SA method is beneficial for the original equipment manufacturers developing related technologies in the future.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 25 October 2021

Cong Li, YunFeng Xie, Gang Wang, XianFeng Zeng and Hui Jing

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

993

Abstract

Purpose

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

Design/methodology/approach

Firstly, the bicycle model is adopted in the system modelling process. To improve the accuracy, the lateral stiffness of front and rear tire is estimated using the real-time yaw rate acceleration and lateral acceleration of the vehicle based on the vehicle dynamics. Then the constraint of input and output in the model predictive controller is designed. Soft constraints on the lateral speed of the vehicle are designed to guarantee the solved persistent feasibility and enforce the vehicle’s sideslip angle within a safety range.

Findings

The simulation results show that the proposed lateral stability controller based on the MPC algorithm can improve the handling and stability performance of the vehicle under complex working conditions.

Originality/value

The MPC schema and the objective function are established. The integrated active front steering/direct yaw moments control strategy is simultaneously adopted in the model. The vehicle’s sideslip angle is chosen as the constraint and is controlled in stable range. The online estimation of tire stiffness is performed. The vehicle’s lateral acceleration and the yaw rate acceleration are modelled into the two-degree-of-freedom equation to solve the tire cornering stiffness in real time. This can ensure the accuracy of model.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 7 August 2017

Junghee Han and Chang-min Park

This paper aims at investigating the role of institutional entrepreneurship and corporate entrepreneurship to cope with firm’ impasses by adoption of the new technology ahead of…

40387

Abstract

Purpose

This paper aims at investigating the role of institutional entrepreneurship and corporate entrepreneurship to cope with firm’ impasses by adoption of the new technology ahead of other firms. Also, this paper elucidates the importance of own specific institutional and corporate entrepreneurship created from firm’s norm.

Design/methodology/approach

The utilized research frame is as follows: first, perspective of studies on institutional and corporate entrepreneurship are performed using prior literature and preliminary references; second, analytical research frame was proposed; finally, phase-based cases are conducted so as to identify research objective.

Findings

Kumho Tire was the first tire manufacturer in the world to exploit the utilization of radio-frequency identification for passenger carâ’s tire. Kumho Tire takes great satisfaction in lots of failures to develop the cutting edge technology using advanced information and communication technology cultivated by heterogeneous institution and corporate entrepreneurship.

Originality/value

The firm concentrated its resources into building the organization’s communication process and enhancing the quality of its human resources from the early stages of their birth so as to create distinguishable corporate entrepreneurship.

Details

Asia Pacific Journal of Innovation and Entrepreneurship, vol. 11 no. 2
Type: Research Article
ISSN: 2071-1395

Keywords

Open Access
Article
Publication date: 5 October 2018

Liwei Xu, Guodong Yin, Guangmin Li, Athar Hanif and Chentong Bian

The purpose of this paper is to investigate problems in performing stable lane changes and to find a solution to reduce energy consumption of autonomous electric vehicles.

1538

Abstract

Purpose

The purpose of this paper is to investigate problems in performing stable lane changes and to find a solution to reduce energy consumption of autonomous electric vehicles.

Design/methodology/approach

An optimization algorithm, model predictive control (MPC) and Karush–Kuhn–Tucker (KKT) conditions are adopted to resolve the problems of obtaining optimal lane time, tracking dynamic reference and energy-efficient allocation. In this paper, the dynamic constraints of vehicles during lane change are first established based on the longitudinal and lateral force coupling characteristics and the nominal reference trajectory. Then, by optimizing the lane change time, the yaw rate and lateral acceleration that connect with the lane change time are limed. Furthermore, to assure the dynamic properties of autonomous vehicles, the real system inputs under the restraints are obtained by using the MPC method. Based on the gained inputs and the efficient map of brushless direct-current in-wheel motors (BLDC IWMs), the nonlinear cost function which combines vehicle dynamic and energy consumption is given and the KKT-based method is adopted.

Findings

The effectiveness of the proposed control system is verified by numerical simulations. Consequently, the proposed control system can successfully achieve stable trajectory planning, which means that the yaw rate and longitudinal and lateral acceleration of vehicle are within stability boundaries, which accomplishes accurate tracking control and decreases obvious energy consumption.

Originality/value

This paper proposes a solution to simultaneously satisfy stable lane change maneuvering and reduction of energy consumption for autonomous electric vehicles. Different from previous path planning researches in which only the geometric constraints are involved, this paper considers vehicle dynamics, and stability boundaries are established in path planning to ensure the feasibility of the generated reference path.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 3 December 2019

Wei Xue, Rencheng Zheng, Bo Yang, Zheng Wang, Tsutomu Kaizuka and Kimihiko Nakano

Automated driving systems (ADSs) are being developed to avoid human error and improve driving safety. However, limited focus has been given to the fallback behavior of automated…

1709

Abstract

Purpose

Automated driving systems (ADSs) are being developed to avoid human error and improve driving safety. However, limited focus has been given to the fallback behavior of automated vehicles, which act as a fail-safe mechanism to deal with safety issues resulting from sensor failure. Therefore, this study aims to establish a fallback control approach aimed at driving an automated vehicle to a safe parking lane under perceptive sensor malfunction.

Design/methodology/approach

Owing to an undetected area resulting from a front sensor malfunction, the proposed ADS first creates virtual vehicles to replace existing vehicles in the undetected area. Afterward, the virtual vehicles are assumed to perform the most hazardous driving behavior toward the host vehicle; an adaptive model predictive control algorithm is then presented to optimize the control task during the fallback procedure, avoiding potential collisions with surrounding vehicles. This fallback approach was tested in typical cases related to car-following and lane changes.

Findings

It is confirmed that the host vehicle avoid collision with the surrounding vehicles during the fallback procedure, revealing that the proposed method is effective for the test scenarios.

Originality/value

This study presents a model for the path-planning problem regarding an automated vehicle under perceptive sensor failure, and it proposes an original path-planning approach based on virtual vehicle scheme to improve the safety of an automated vehicle during a fallback procedure. This proposal gives a different view on the fallback safety problem from the normal strategy, in which the mode is switched to manual if a driver is available or the vehicle is instantly stopped.

Details

Journal of Intelligent and Connected Vehicles, vol. 2 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 31 March 2021

Mei Sha, Theo Notteboom, Tao Zhang, Xin Zhou and Tianbao Qin

This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System…

Abstract

This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System (CTLOS). The simulation model for the CTLOS, a typical type of discrete event dynamic system (DEDS), consists of three sub-models: ship queue, loading-unloading operations and yard-gate operations. The simulation model is empirically applied to phase 1 of the Yangshan Deep Water Port in Shanghai. This study considers different scenarios in terms of container throughput levels, equipment utilization rates, and operational bottlenecks, and presents a sensitivity analysis to evaluate and choose reasonable equipment ratio ranges under different operational conditions.

Details

Journal of International Logistics and Trade, vol. 19 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 12 December 2020

Anu Kohli and Ram Singh

Automobile industry has been the backbone of manufacturing sector in any country. During the past decade, passenger car industry has emerged as the one of the growing sectors in…

3498

Abstract

Purpose

Automobile industry has been the backbone of manufacturing sector in any country. During the past decade, passenger car industry has emerged as the one of the growing sectors in the Indian economy. Technological features in the passenger cars industry has been evolving in the global market, and customers have been the most important stakeholders to judge the requirement of these features. Therefore, the purpose of this paper is to analyze the customers’ need for these emerging technologies using Kano model of customer satisfaction.

Design/methodology/approach

This paper has used the Kano model to assess the customer satisfaction for Indian passenger car companies. Overall, 250 customers of passenger cars from Northern India have been surveyed using well-structured questionnaire designed as per the Kano model. On the basis of responses, this study has categorized the technological attributes of passenger cars as attractive, must be, one-dimensional and indifferent.

Findings

“Auto Gear Shift” system has emerged as a must be attribute. “Premium surround system” has been categorized under one-dimensional attribute. “Communication between vehicles,” “integration with smart phone,” “connecting applications,” “dual-stage airbags,” “in-dash navigation system,” “rearview camera,” “heated and cooled seats,” “built-in fourth generation long term evolution,” “Wi-Fi system” and “automated window cleaning system” have emerged as attractive features. The customers have been indifferent about “gesture control,” “reality display on car wind screen” and “run-on-flat tyre.” In contradiction to the popular belief, this study has found that customers have shown Indifferent attitude toward “hydrogen fuel-operated cars” and “battery cars.”

Research limitations/implications

This present study gives insight about the acceptability of various emerging technological features in Indian car market. This study has fulfilled the existing dearth in assessing the customers’ insight about the implementation of these emerging technologies in Indian cars. This paper will be helpful to the manufacturers to inculcate the voice of the customers in designing the new technologies for the passenger cars.

Originality/value

Previous studies across the globe have applied Kano model for assessing customers’ satisfaction in various industries, but according to the authors’ knowledge, hardly any study was conducted in context of technological attributes for Indian passenger car companies.

Details

Vilakshan - XIMB Journal of Management, vol. 18 no. 1
Type: Research Article
ISSN: 0973-1954

Keywords

Open Access
Article
Publication date: 30 June 2019

Hoang Thai Pham and Hyangsook Lee

A boom in e-commerce in Korea has sparked off high daily-volume demand for small-sized home delivery services, which poses a great challenge to distribution networks, especially…

Abstract

A boom in e-commerce in Korea has sparked off high daily-volume demand for small-sized home delivery services, which poses a great challenge to distribution networks, especially in urban areas where traffic congestion, accessibility, and pollution are serious problems. In addition, security issues for people who live in small townhouses and detached houses without security systems and guards have received increasing attention from the government and society. Thus, the introduction of a new alternative for home delivery services, unmanned parcel lockers, is urgent for residents living in these areas. This paper examines and compares potential socio-economic impacts in terms of costs and benefits when such lockers are installed at selected locations in residential areas. The results show that this policy is worthy of adoption, with several undeniable benefits to local communities. In addition, sensitivity analyses estimate the economic performance of this project at different social discount rates, and they check the sensitivity of economic performance based on variations in the variables. The value of travel time savings was identified as a critical and dominating factor directly affecting economic performance.

Details

Journal of International Logistics and Trade, vol. 17 no. 2
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 28 December 2020

Qinjie Yang, Guozhe Shen, Chao Liu, Zheng Wang, Kai Zheng and Rencheng Zheng

Steer-by-wire (SBW) system mainly relies on sensors, controllers and motors to replace the traditionally mechanical transmission mechanism to realize steering functions. However…

1268

Abstract

Purpose

Steer-by-wire (SBW) system mainly relies on sensors, controllers and motors to replace the traditionally mechanical transmission mechanism to realize steering functions. However, the sensors in the SBW system are particularly vulnerable to external influences, which can cause systemic faults, leading to poor steering performance and even system instability. Therefore, this paper aims to adopt a fault-tolerant control method to solve the safety problem of the SBW system caused by sensors failure.

Design/methodology/approach

This paper proposes an active fault-tolerant control framework to deal with sensors failure in the SBW system by hierarchically introducing fault observer, fault estimator, fault reconstructor. Firstly, the fault observer is used to obtain the observation output of the SBW system and then obtain the residual between the observation output and the SBW system output. And then judge whether the SBW system fails according to the residual. Secondly, dependent on the residual obtained by the fault observer, a fault estimator is designed using bounded real lemma and regional pole configuration to estimate the amplitude and time-varying characteristics of the faulty sensor. Eventually, a fault reconstructor is designed based on the estimation value of sensors fault obtained by the fault estimator and SBW system output to tolerate the faulty sensor.

Findings

The numerical analysis shows that the fault observer can be rapidly activated to detect the fault while the sensors fault occurs. Moreover, the estimation accuracy of the fault estimator can reach to 98%, and the fault reconstructor can make the faulty SBW system to retain the steering characteristics, comparing to those of the fault-free SBW system. In addition, it was verified for the feasibility and effectiveness of the proposed control framework.

Research limitations/implications

As the SBW fault diagnosis and fault-tolerant control in this paper only carry out numerical simulation research on sensors faults in matrix and laboratory/Simulink, the subsequent hardware in the loop test is needed for further verification.

Originality/value

Aiming at the SBW system with parameter perturbation and sensors failure, this paper proposes an active fault-tolerant control framework, which integrates fault observer, fault estimator and fault reconstructor so that the steering performance of SBW system with sensors faults is basically consistent with that of the fault-free SBW system.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 17 September 2020

Tao Peng, Xingliang Liu, Rui Fang, Ronghui Zhang, Yanwei Pang, Tao Wang and Yike Tong

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

1679

Abstract

Purpose

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

Design/methodology/approach

The authors proposed a novel safety lane-change path planning and tracking control method for articulated vehicles. A double-Gaussian distribution was introduced to deduce the lane-change trajectories of tractor and trailer coupling characteristics of intelligent vehicles and roads. With different steering and braking maneuvers, minimum safe distances were modeled and calculated. Considering safety and ergonomics, the authors invested multilevel self-driving modes that serve as the basis of decision-making for vehicle lane-change. Furthermore, a combined controller was designed by feedback linearization and single-point preview optimization to ensure the path tracking and robust stability. Specialized hardware in the loop simulation platform was built to verify the effectiveness of the designed method.

Findings

The numerical simulation results demonstrated the path-planning model feasibility and controller-combined decision mechanism effectiveness to self-driving trucks. The proposed trajectory model could provide safety lane-change path planning, and the designed controller could ensure good tracking and robust stability for the closed-loop nonlinear system.

Originality/value

This is a fundamental research of intelligent local path planning and automatic control for articulated vehicles. There are two main contributions: the first is a more quantifiable trajectory model for self-driving articulated vehicles, which provides the opportunity to adapt vehicle and scene changes. The second involves designing a feedback linearization controller, combined with a multi-objective decision-making mode, to improve the comprehensive performance of intelligent vehicles. This study provides a valuable reference to develop advanced driving assistant system and intelligent control systems for self-driving articulated vehicles.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

1 – 10 of 307