Search results

1 – 10 of 18
Article
Publication date: 1 February 2002

S. Sathiyanarayanan, C. Marikkannu, P. Bala Srinivasan and V. Muthupandi

Compares the corrosion behaviour of Ti6Al4V titanium alloy, a conventional duplex stainless steel (UNS 31803) and AISI 304 austenitic stainless steel in synthetic biofluids using…

1076

Abstract

Compares the corrosion behaviour of Ti6Al4V titanium alloy, a conventional duplex stainless steel (UNS 31803) and AISI 304 austenitic stainless steel in synthetic biofluids using electrochemical techniques and comments on the suitability of DSS for use in biomedical applications. Finds that the general corrosion resistance of duplex stainless steels is slightly inferior to that of austenitic stainless steel and titanium alloy; duplex stainless steel does not show any sign of pitting when exposed to synthetic biofluids and exhibits excellent resistance to localised corrosion on par with that of titanium alloy. Concludes that duplex stainless steels are one of the best alternates to titanium alloys.

Details

Anti-Corrosion Methods and Materials, vol. 49 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 October 2014

Yujie Quan, Philipp Drescher, Faming Zhang, Eberhard Burkel and Hermann Seitz

The purpose of this paper is to fabricate cellular Ti6Al4V with carbon nanotube (CNT)-like structures by selective electron beam melting and study the resultant mechanical…

Abstract

Purpose

The purpose of this paper is to fabricate cellular Ti6Al4V with carbon nanotube (CNT)-like structures by selective electron beam melting and study the resultant mechanical properties based on each respective geometry to provide fundamental information for optimizing molecular architectures and predicting the mechanical properties of cellular solids.

Design/methodology/approach

Cellular Ti6Al4V with CNT-like zigzag and armchair structures are fabricated by selected electron beam melting. The microstructures and mechanical properties of these samples are evaluated utilizing scanning electron microscopy, synchrotron radiation X-ray and compressive tests.

Findings

The mechanical properties of the cellular solids depend on the geometry of strut architectures. The armchair-structured Ti6Al4V samples exhibit Young’s modulus from 501.10 to 707.60 MPa and compressive strength from 8.73 to 13.45 MPa. The zigzag structured samples demonstrate Young’s modulus from 548.19 to 829.58 MPa and compressive strength from 9.32 to 16.21 MPa. The results suggest that the zigzag structure of the Ti6Al4V cellular solids can achieve improved mechanical properties and the mechanism for the enhanced mechanical properties in the zigzag structures was revealed.

Originality/value

The results provide an innovative example for modulating the mechanical properties of cellular titanium by adjusting the unit cell geometry. The Ti6Al4V cellular solids with single-walled CNT-like structures could be used as light-weight construction components or filters in industries. The Ti6Al4V with multiwalled CNT-like structures could be used as new scaffolds for biomedical applications.

Details

Rapid Prototyping Journal, vol. 20 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 August 2014

Shuangyan Lei, Matthew C. Frank, Donald D. Anderson and Thomas D. Brown

The purpose of this paper is to present a new method for representing heterogeneous materials using nested STL shells, based, in particular, on the density distributions of human…

Abstract

Purpose

The purpose of this paper is to present a new method for representing heterogeneous materials using nested STL shells, based, in particular, on the density distributions of human bones.

Design/methodology/approach

Nested STL shells, called Matryoshka models, are described, based on their namesake Russian nesting dolls. In this approach, polygonal models, such as STL shells, are “stacked” inside one another to represent different material regions. The Matryoshka model addresses the challenge of representing different densities and different types of bone when reverse engineering from medical images. The Matryoshka model is generated via an iterative process of thresholding the Hounsfield Unit (HU) data using computed tomography (CT), thereby delineating regions of progressively increasing bone density. These nested shells can represent regions starting with the medullary (bone marrow) canal, up through and including the outer surface of the bone.

Findings

The Matryoshka approach introduced can be used to generate accurate models of heterogeneous materials in an automated fashion, avoiding the challenge of hand-creating an assembly model for input to multi-material additive or subtractive manufacturing.

Originality/value

This paper presents a new method for describing heterogeneous materials: in this case, the density distribution in a human bone. The authors show how the Matryoshka model can be used to plan harvesting locations for creating custom rapid allograft bone implants from donor bone. An implementation of a proposed harvesting method is demonstrated, followed by a case study using subtractive rapid prototyping to harvest a bone implant from a human tibia surrogate.

Details

Rapid Prototyping Journal, vol. 20 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 December 2003

Jon Rigelsford

425

Abstract

Details

Assembly Automation, vol. 23 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 12 March 2018

Yuan Wang

The main purpose of this study is to enhance bio-tribological properties of Ti6Al4V and the surface-modified layers of Ni+/N+-implanted Ti6Al4V alloy, bionic texturing was done on…

Abstract

Purpose

The main purpose of this study is to enhance bio-tribological properties of Ti6Al4V and the surface-modified layers of Ni+/N+-implanted Ti6Al4V alloy, bionic texturing was done on Ti6Al4V surface.

Design/methodology/approach

The phase compositions and nano-hardness of the surface-modified layers of the samples have been analyzed by X-ray diffractometer and Nano Indenter, respectively. This paper has conducted bio-tribological tests under artificial saliva, sodium hyalurate and sodium hyalurate +γ-globulin by micro tribology multifunction tribometer, with ZrO2 ball/modified layer as the friction pair. S-3000N scanning electron microscope has been used to analyze the morphology of the surface-modified layers and scratches of the ones after the bio-tribological tests.

Findings

The results show that the surface-modified layers were mainly composed of Ti2Ni and Ti2N. Moreover, bionic texturing can obviously increase the contents of Ti2Ni and Ti2N that were formed on the surface of Ni+/N+-implanted Ti6Al4V alloy, and enhance the nano-hardness of the surface-modified layers. It could also reduce the friction coefficients of the surface-modified layers, and render the modified layers more wear-resistant.

Originality/value

The surface bio-tribological properties of Ti6Al4V have been enhanced by ion implantation technique and bionic texturing in this paper; this provided a new method for the research of related fields.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 1969

D.M. McElhinney, A.W. Kitchenside and K.A. Rowland

THIS article considers the role of carbon fibre reinforced plastic as a reinforcement for conventional aircraft structural components. It is in this mode that we expect to see the…

Abstract

THIS article considers the role of carbon fibre reinforced plastic as a reinforcement for conventional aircraft structural components. It is in this mode that we expect to see the most extensive use of this new material in the near future, particularly for applications in commercial airliners where, more than in most fields of engineering, it is necessary to temper the vital pressure for greater efficiency by an appreciation of the problems in attempting to achieve too much too soon. The conclusions are based on research and development by British Aircraft Corporation, Weybridge Division, during the past year, primarily in its intensive design development of the new wide‐bodied B.A.C. Three‐Eleven airliner.

Details

Aircraft Engineering and Aerospace Technology, vol. 41 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 30 June 2023

Dongya Zhang, Ao Bai, Xin Du, Gang Li and Jiaoyi Wu

This paper aims to improve the wear resistance of titanium alloy using a high-hardness boride layer, which was fabricated on Ti6Al4V by a high-temperature boronizing process.

Abstract

Purpose

This paper aims to improve the wear resistance of titanium alloy using a high-hardness boride layer, which was fabricated on Ti6Al4V by a high-temperature boronizing process.

Design/methodology/approach

The boride layers on Ti6Al4V were obtained at 1000°C for 5–15 h. Scanning electron microscopy, energy dispersive analysis and X-ray diffractometer were used to characterize the properties of the boride layer. The tribological performance of the boride layer at room and elevated temperatures was investigated.

Findings

The X-ray diffraction analysis showed that the boride layers were a dual-phase structure of TiB and TiB2. When the boronizing time increased from 5 h to 15 h, the microhardness increased from 1192 HV0.5 to 1619.8 HV0.5. At 25°C and elevated temperatures, the friction coefficients of the boride layers were higher than that of Ti6Al4V. The wear track areas of T-5 at 200°C and 400°C were 2.5 × 10–3 and 1.1 × 10–3 mm2, respectively, which were 6.1% and 2.6% of that of Ti6Al4V, indicating boride layer exhibited a significant wear resistance. The wear mechanisms of the boride layer transformed from slight peeling to oxidative wear and abrasive wear as the temperature was raised.

Originality/value

The findings provide an effective strategy for improving the wear resistance of Ti6Al4V and have important implications for the application of titanium alloy in a high-temperature field.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 January 2022

Martins Ugonna Obi, Patrick Pradel, Matt Sinclair and Richard Bibb

The purpose of this paper is to understand how Design for Additive manufacturing Knowledge has been developing and its significance to both academia and industry.

Abstract

Purpose

The purpose of this paper is to understand how Design for Additive manufacturing Knowledge has been developing and its significance to both academia and industry.

Design/methodology/approach

In this paper, the authors use a bibliometric approach to analyse publications from January 2010 to December 2020 to explore the subject areas, publication outlets, most active authors, geographical distribution of scholarly outputs, collaboration and co-citations at both institutional and geographical levels and outcomes from keywords analysis.

Findings

The findings reveal that most knowledge has been developed in DfAM methods, rules and guidelines. This may suggest that designers are trying to learn new ways of harnessing the freedom offered by AM. Furthermore, more knowledge is needed to understand how to tackle the inherent limitations of AM processes. Moreover, DfAM knowledge has thus far been developed mostly by authors in a small number of institutional and geographical clusters, potentially limiting diverse perspectives and synergies from international collaboration which are essential for global knowledge development, for improvement of the quality of DfAM research and for its wider dissemination.

Originality/value

A concise structure of DfAM knowledge areas upon which the bibliometric analysis was conducted has been developed. Furthermore, areas where research is concentrated and those that require further knowledge development are revealed.

Details

Rapid Prototyping Journal, vol. 28 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 May 2020

Hanmant Virbhadra Shete and Madhav S. Sohani

This paper aims to examine an investigation of high-pressure coolant (HPC) drilling process with regard to experimental models of output parameters, effect of input parameters on…

Abstract

Purpose

This paper aims to examine an investigation of high-pressure coolant (HPC) drilling process with regard to experimental models of output parameters, effect of input parameters on output parameters and simultaneous optimization of the output parameters.

Design/methodology/approach

Experimental plan was designed using response surface method and experiments were conducted on HPC drilling set up. Measurements for output parameters were carried out and mathematical models were obtained. Multi response optimization using a composite desirability function approach was used to obtain optimum values of input parameters for simultaneous optimization of output parameters.

Findings

Optimal value of input parameters for optimization of HPC drilling process were obtained as; coolant pressure: 21 bar, spindle speed: 3,970 rpm, feed rate: 0.084 mm/rev and peck depth: 5.50 mm. The composite desirability obtained is 0.9412, which indicates that the performance of HPC drilling process was significantly optimized. Developed mathematical models of the output parameters accurately represent the entire design space under investigation.

Originality/value

This is the first study that involves variation of higher coolant pressure and investigation of HPC drilling process using response surface methodology and multi response optimization technique with desirability function.

Article
Publication date: 7 September 2022

Abdul Wahab Hashmi, Harlal Singh Mali and Anoj Meena

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the…

Abstract

Purpose

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the products manufactured using AM usually suffer from defects like roughness or uneven surfaces. This paper discusses the various surface quality improvement techniques, including how to reduce surface defects, surface roughness and dimensional accuracy of AM parts.

Design/methodology/approach

There are many different types of popular AM methods. Unfortunately, these AM methods are susceptible to different kinds of surface defects in the product. As a result, pre- and postprocessing efforts and control of various AM process parameters are needed to improve the surface quality and reduce surface roughness.

Findings

In this paper, the various surface quality improvement methods are categorized based on the type of materials, working principles of AM and types of finishing processes. They have been divided into chemical, thermal, mechanical and hybrid-based categories.

Research limitations/implications

The review has evaluated the possibility of various surface finishing methods for enhancing the surface quality of AM parts. It has also discussed the research perspective of these methods for surface finishing of AM parts at micro- to nanolevel surface roughness and better dimensional accuracy.

Originality/value

This paper represents a comprehensive review of surface quality improvement methods for both metals and polymer-based AM parts.

Graphical abstract of surface quality improvement methods

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 18