Search results

21 – 30 of over 1000
Article
Publication date: 1 July 2006

Jean‐Charles Mare

To develop structured guidelines for the synthesis of dynamic force simulators that are required for the testing of high speed aerospace actuators. To provide realistic and proven…

4333

Abstract

Purpose

To develop structured guidelines for the synthesis of dynamic force simulators that are required for the testing of high speed aerospace actuators. To provide realistic and proven solutions at both test bench hardware and control design levels.

Design/methodology/approach

The state of the art in control design applied to load simulators in mainly based on complex controllers and does not take into account practical considerations. The objective of the present work is to provide generic preliminary design rules to ensure that the test bench architectures (frame, power transmission and control) and the components specifications are consistent with the targeted performance. Once selected the appropriate power transmission architecture, a linear approach is used as a foundation to generate design rules. Then, preliminary design is achieved thanks to the introduction, as early as possible, of the unavoidable technological defects.

Findings

A step‐by‐step methodology allows the designer to select the controller architecture and to specify components with special care to their consistency with the required dynamic performance. The linear then practical approach generates key rules that can be used in the very early phase of the test bench design.

Originality/value

Practical considerations on the components static and dynamic limitations are introduced progressively to make the natural test bench performance as consistent as possible with the performance requirements. Consequently, the controller becomes simpler to design and robust.

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 30 October 2007

K.L. Zhang, S.K. Chou and S.S. Ang

The paper aims to develop a wireless addressing interface circuitry for solid propellant microthruster array applications.

1087

Abstract

Purpose

The paper aims to develop a wireless addressing interface circuitry for solid propellant microthruster array applications.

Design/methodology/approach

The solid propellant microthruster is a relatively new class of micropropulsion system for microspacecraft. To produce a controlled vectored thrust, a microthruster array is needed. Realization of the addressing ability and wireless communication is the key to the development of the microthruster array. Therefore, a prototype wireless addressing circuitry was developed to realize the addressing of the microthruster array by a multiplexing system. The addressing circuitry also enables measurement of the igniter temperature variation with time by measuring the igniter resistance change and automatic control by RS232 and RF wireless communications. Operating principles, design, fabrication, and testing of the circuitry are addressed.

Findings

A prototype integrated wireless addressing circuitry was designed and fabricated to realize the addressing of individual microthrusters in the microthruster array, to measure the igniter temperature variation with time, and to achieve automatic control using RS232 and RF wireless communications. Using the programmable voltage source in the circuitry, the igniter temperature could be accurately controlled in 256 steps using an 8 bit word. The 10 bit analog‐to‐digital converter feedback loop circuitry enabled real‐time monitoring of each igniter in the microthruster array and allowing each igniter to be functionally controlled.

Originality/value

In this paper, a wireless addressing interface circuitry is developed for the first time for solid propellant microthruster array applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 18 October 2018

S. Manigandan and Vijayaraja K.

The purpose of this paper is to present the results of mixing promotion and screech frequency of controlled elliptical supersonic jet.

Abstract

Purpose

The purpose of this paper is to present the results of mixing promotion and screech frequency of controlled elliptical supersonic jet.

Design/methodology/approach

Flow field characteristics of low-aspect-ratio elliptical jets are examined at over-expanded, under-expanded and correctly expanded conditions. The tabs are placed at elliptical jet exit along the major and minor axes.

Findings

The results show that the mixing done by the minor axis is superior to the tabs along major axis. At all pressure ratios, the content of jet noise and the frequency are high for the tabs along the major axis because of increase in the amplitude of screech frequency. Further the tabs along minor axis show a dominance of large-scale vertical structures. In under-expanded conditions, the shock cell shows the rapid change because of the presence of tabs. The tabs along minor axis are making the shock weaker, hence no evidence of axis switching.

Practical implications

To achieve the greater performance of jet, the authors need to reduce the potential core length of the issuing jet. This can be achieved by implementing different types of tabs at the exit of the nozzle.

Originality/value

The present paper represents the flow of controlled jet using inverted triangular tabs. By achieving the controlled jet flow, the performance of propulsion systems can be improved. This can be used in systems such as combustion chamber, missile’s noise reduction and thrust vector control.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 December 2022

Jiaru Shao, Xueping Mo, Zijun Zheng and Yu Yang

This study aims to improve the survivability and maneuverability of the fighter,and study the stealth performance of fighter in the jet noise of aeroengine, it is of great…

Abstract

Purpose

This study aims to improve the survivability and maneuverability of the fighter,and study the stealth performance of fighter in the jet noise of aeroengine, it is of great significance to study the jet noise characteristics of double S-bend nozzles.

Design/methodology/approach

The multiparameter coupling and super-ellipse design methods are used to design the cross section of double S-bend nozzle. Taking unsteady flow information as the equivalent sound source, the noise signal at the far-field monitoring points were calculated with Ffowcs Williams–Hawkings (FW–H) method, and then, the sound source characteristics of the double S-bend nozzle are analyzed.

Findings

The results show that the internal flow of the S-bend nozzle with rectangular section is smoothed and the aerodynamic performance is better than super-ellipse section, the shear layer length of rectangular section is longer, the thickness is smaller and the mixing ability is stronger. The sound pressure level of the two S-bend nozzles decreases with the increase of the monitoring angle, and the sound pressure on the horizontal plane is greater than the vertical plane. In the direction of 40°–120°, the jet noise of rectangular nozzle is smaller, and the multiparameter coupled rectangular cross section structure is more applicable.

Practical implications

It is beneficial to reduce the jet noise of the engine tail nozzle and improve the stealth performance of the aircraft.

Originality/value

There is very little research on the jet noise characteristics of the double S-bend nozzle. The multiparameter coupling and the super-ellipse method are used to design the nozzle flow section to study the aerodynamic performance and jet noise characteristics of the double S-bend nozzle and to improve the acoustic stealth characteristics of the aircraft.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Harnessing the Power of Failure: Using Storytelling and Systems Engineering to Enhance Organizational Learning
Type: Book
ISBN: 978-1-78754-199-3

Article
Publication date: 6 March 2017

Soyinka Olukunle Kolawole and Duan Haibin

Keeping satellite position within close tolerances is key for the utilization of satellite formations for space missions. The presence of perturbation forces makes control

Abstract

Purpose

Keeping satellite position within close tolerances is key for the utilization of satellite formations for space missions. The presence of perturbation forces makes control inevitable if such mission objective is to be realised. Various approaches have been used to obtain feedback controller parameters for satellites in a formation; this paper aims to approach the problem of estimating the optimal feedback parameter for a leader–follower pair of satellites in a small eccentric orbit using nature-based search algorithms.

Design/methodology/approach

The chaotic artificial bee colony algorithm is a variant of the basic artificial bee colony algorithm. The algorithm mimics the behaviour of bees in their search for food sources. This paper uses the algorithm in optimizing feedback controller parameters for a satellite formation control problem. The problem is formulated to optimize the controller parameters while minimizing a fuel- and state-dependent cost function. The dynamical model of the satellite is based on Gauss variational equations with J2 perturbation. Detailed implementation of the procedure is provided, and experimental results of using the algorithm are also presented to show feasibility of the method.

Findings

The experimental results indicate the feasibility of this approach, clearly showing the effective control of the transients that arise because of J2 perturbation.

Originality/value

This paper applied a swarm intelligence approach to the problem of estimating optimal feedback control parameter for a pair of satellites in a formation.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 June 2024

T.V.S. Manikanta and B.T.N. Sridhar

This study aims to study the interaction effects between a rectangular supersonic jet with a flat wall computationally using wall length as a parameter. The purpose of this study…

Abstract

Purpose

This study aims to study the interaction effects between a rectangular supersonic jet with a flat wall computationally using wall length as a parameter. The purpose of this study is to investigate the effect of change in wall length on supersonic core length (SCL) reduction, jet deflection and jet decay behavior.

Design/methodology/approach

The design Mach number and aspect ratio at the rectangular exit were 1.8 and 2, respectively. To study the wall length effects on jet-wall interactions, wall length (Lw) was varied as 0.5Dh, 1Dh, 2Dh, 4Dh and 8Dh, where Dh was the hydraulic diameter of the nozzle exit. The flat wall with the matching width of the rectangular exit section of a supersonic nozzle was placed at the nozzle exit such that the supersonic jet grazed past the wall. The studies were carried out at over-expansion [nozzle pressure ratio (NPR) = 4], near optimum expansion (NPR = 6) and under-expansion (NPR = 8) levels.

Findings

Results indicated that significant reduction in wall-bounded SCL was noticed in the range of 0.5Dh Lw 1Dh for both over-expansion and under-expansion conditions. At Lw 4Dh, SCL got enhanced at NPR = 4 and 6 but had a negligible effect at NPR = 8.

Practical implications

Thrust vector control, noise reduction and easy take-off for high-speed aircraft.

Originality/value

The effect of change in flat wall length on interaction characteristics of a rectangular supersonic jet was not studied before in terms of SCL reduction and jet decay behavior.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 August 1982

Normalair‐Garrett Ltd., (Stand No. N31) part of the Westland plc Group of Yeovil, Somerset, is exhibiting a wide range of products which demonstrate the company's diverse…

Abstract

Normalair‐Garrett Ltd., (Stand No. N31) part of the Westland plc Group of Yeovil, Somerset, is exhibiting a wide range of products which demonstrate the company's diverse capabilities in control systems and precision components for the aerospace industry.

Details

Aircraft Engineering and Aerospace Technology, vol. 54 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 April 1970

AS a preliminary to the detail description of the Harrier V/S.T.O.L. Operational Trainer — designated Harrier T. Mk. 2 — it is worth recalling that Hawker Siddeley first made…

Abstract

AS a preliminary to the detail description of the Harrier V/S.T.O.L. Operational Trainer — designated Harrier T. Mk. 2 — it is worth recalling that Hawker Siddeley first made proposals for a dual version of the P.1127 as early as September 1960 (Fig. 1). However, due to the relatively small number of early P.1127 and Kestrel aircraft, efforts to introduce a trainer proved abortive until the Harrier G.R. Mk. 1 production order materialised, following the batch of six Harrier development single seatcr aircraft. A feasibility study for a V/S.T.O.L. Dual Version Harrier was submitted to MinTech in September 1965. This was followed up by a project study in April 1967, which culminated in firm orders for two development two‐seater aircraft, to be followed by a batch of production aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 42 no. 4
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 September 1980

It is to be regretted that, this year, hardly any information was received from the public relations department of SBAC despite numerous requests.

Abstract

It is to be regretted that, this year, hardly any information was received from the public relations department of SBAC despite numerous requests.

Details

Aircraft Engineering and Aerospace Technology, vol. 52 no. 9
Type: Research Article
ISSN: 0002-2667

21 – 30 of over 1000