Search results

1 – 10 of over 7000
Article
Publication date: 2 November 2015

Qinfen Lu, Yanxin Li, Yunyue Ye, J.T. Chen and Z.Q. Zhu

Due to linear structure, linear switched flux permanent magnet machines (LSFPMMs) also may have odd pole primary, such as 9, 15, 21, etc., without unbalanced magnetic force in…

Abstract

Purpose

Due to linear structure, linear switched flux permanent magnet machines (LSFPMMs) also may have odd pole primary, such as 9, 15, 21, etc., without unbalanced magnetic force in equivalent rotary machines. The paper aims to discuss these issues.

Design/methodology/approach

In order to increase the thrust force density, the influence of some major design parameters, including split ratio, PM thickness, primary slot width and secondary pole width, are investigated by finite element analysis. For reducing the thrust force ripple under on-load condition, the end auxiliary teeth are adopted and their positions are also optimized.

Findings

This novel 9/10 primary/secondary poles LSFPMM has high average thrust force and low thrust force ripple by optimization. The results demonstrate that the odd pole primary may be a good candidate for long-stroke linear direct drive application.

Originality/value

A novel 9/10 primary/secondary poles linear switched flux permanent magnet machine is developed in this paper. The similar conclusions could be obtained for other LSFPMMs with odd pole primary.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 November 2014

Amrinder Pal Singh, Manu Sharma and Inderdeep Singh

Damage due to delamination is an important issue during drilling in polymer-matrix composites (PMCs). It depends on thrust force and torque which are functions of feed rate…

Abstract

Purpose

Damage due to delamination is an important issue during drilling in polymer-matrix composites (PMCs). It depends on thrust force and torque which are functions of feed rate. Transfer function of thrust force with feed rate and torque with feed rate is constructed through experiments. These transfer functions are then combined in state-space to formulate a sixth-order model. Then thrust force and torque are controlled by using optimal controller. The paper aims to discuss these issues.

Design/methodology/approach

A glass fiber reinforced plastic composite is drilled at constant feed rate during experimentation. The corresponding time response of thrust force and torque is recorded. Third-order transfer functions of thrust force with feed rate and torque with feed rate are identified using system identification toolbox of Matlab®. These transfer functions are then converted into sixth-order combined state-space model. Optimal controller is then designed to track given reference trajectories of thrust force/torque during drilling in composite laminate.

Findings

Optimal control is used to simultaneously control thrust force as well as torque during drilling. There is a critical thrust force during drilling below which no delamination occurs. Therefore, critical thrust force profile is used as reference for delamination free drilling. Present controller precisely tracks the critical thrust force profile. Using critical thrust force as reference, high-speed drilling can be done. The controller is capable of precisely tracking arbitrary thrust force and torque profile simultaneously. Findings suggest that the control mechanism is efficient and can be effective in minimizing drilling induced damage in composite laminates.

Originality/value

Simultaneous optimal control of thrust force and torque during drilling in composites is not available in literature. Feed rate corresponding to critical thrust force trajectory which can prevent delamination at fast speed also not available has been presented.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 September 2018

Lufeng Zhang and Kai Wang

The purpose of this paper is to investigate the electromagnetic performances of the permanent magnet linear synchronous machines (PMLSM) with sine and third harmonic (SIN + 3rd…

Abstract

Purpose

The purpose of this paper is to investigate the electromagnetic performances of the permanent magnet linear synchronous machines (PMLSM) with sine and third harmonic (SIN + 3rd) shaping mover in comparison with the PMLSM with sine (SIN) shaping mover and conventional shaping mover.

Design/methodology/approach

The optimal amplitude of the injected third harmonic to re-shape the SIN + 3rd shaping permanent magnet (PM) for maximizing the thrust force is analytically derived and confirmed by finite element method (FEM). Furthermore, the PM edge thickness, the pole arc to pole pitch ratio and the tooth to slot ratio are optimized. It is found that the optimal amplitude of the injected third harmonic is one-sixth of the fundamental one, the optimal PM edge thickness, the pole arc to pole pitch ratio and the tooth to slot ratio are 0, 0.85 and 0.5 mm, respectively. In addition, the electromagnetic performances are analyzed and quantitatively compared for the PMLSM with SIN + 3rd shaping mover, SIN shaping mover and conventional shaping mover.

Findings

The average thrust force and efficiency of the PMLSM with SIN + 3rd shaping mover are improved significantly, while the thrust ripple is not increased, comparing to those of the PMLSM with SIN shaping mover. Meanwhile, the thrust ripple is lower than that of the conventional shaping mover.

Research limitations/implications

The purely sinusoidal currents are applied in this analysis and the influences of harmonics in the current on electromagnetic performances are not considered.

Originality/value

This paper presents a PMLSM with SIN + 3rd shaping mover to improve the thrust force and efficiency without increasing the thrust ripple, considering the effects of the amplitude of the injected third harmonic to re-shape the SIN + 3rd shaping PM, the PM edge thickness, the pole arc to pole pitch ratio and the tooth to slot ratio.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Yihua Yao, Yi Chen, Qinfen Lu, Xiaoyan Huang and Yunyue Ye

Permanent magnet linear synchronous machines (PMLSMs) have large thrust ripple due to the longitudinal end effect caused by the finite length of the armature compared with rotary…

Abstract

Purpose

Permanent magnet linear synchronous machines (PMLSMs) have large thrust ripple due to the longitudinal end effect caused by the finite length of the armature compared with rotary machines. The purpose of this paper is to analyze the influence of electric loading on thrust ripple performances based on a 12 slots/14 poles (12S/14P) PMLSM. Furthermore, the method of skewed PMs to reduce thrust ripple is investigated based on multi slices 2D finite element (FE) models.

Design/methodology/approach

The thrust ripple of PMLSM under open-circuit condition results from the slotting and the longitudinal end effects. Therefore, periodical model has been designed to clarify the effect of the longitudinal end effect. Under on-load condition, the thrust ripple increases and exhibits an effective component of thrust force. To analyze the thrust ripple under on-load condition, frozen permeability (FP) technique is employed. In addition, the method of skewed PMs is analyzed in this paper to obtain more smooth thrust force performance. The effectiveness of skewing accounting for skew angles, step skew numbers and slot/pole number combinations was highlighted.

Findings

The longitudinal end effect dominates the thrust ripple of PMLSM in both cases, i.e., open-circuit and on-load conditions. Under on-load condition, the second harmonic component of thrust ripple related to flux linkage harmonics increases significantly. Moreover, the effectiveness of skewed PMs is largely reduced with the increase of magnetic saturation. At last, a proper skew angle and step skew number are obtained for the conventional PMLSM with fractional-slot winding.

Originality/value

By 60 electrical degrees and two or three step skewed PMs, the thrust ripple can be decreased to a tolerable limite for conventional PMLSM. The thrust ripple harmonics contributed by longitudinal end effect and flux linkage harmonics are analyzed, respectively, which is beneficial to exploring other techniques such as adding end auxiliary teeth to obtain lower thrust force pulsation.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2013

Xiaohu Zheng, Zhiqiang Liu, Qinglong An, Xibin Wang, Zongwei Xu and Ming Chen

The purpose of this paper is to investigate the cutting mechanism of drilling printed circuit board (PCB) and to optimize the drilling parameters for decreasing burr size and…

Abstract

Purpose

The purpose of this paper is to investigate the cutting mechanism of drilling printed circuit board (PCB) and to optimize the drilling parameters for decreasing burr size and thrust force.

Design/methodology/approach

An experimental study was carried out to investigate the effect of drilling parameters on thrust force and burr formation. The drilling process of PCB was divided by the variation of drilling force signals. Analysis of variance (ANVONA) was carried out for burr size and thrust force. Desirability function method was used in multiple response optimization, to find the best drilling parameters.

Findings

Enter burr and exit burr have different morphologies and types. The generation of enter burr is mainly caused by burr bending which can be observed in micrographs, whereas the generation of exit burr is more complicated than enter burr; both burr breakup and burr bending are observed in exit burrs. In the selected area, the optimized spindle speed and feed rate for drilling PCB is 12 krev/min and 6 mm/s, respectively.

Research limitations/implications

In this paper, hole wall roughness and tool wear were not considered in the optimization of drilling parameters. The future research work should consider them.

Originality/value

This paper investigates the mechanism of burr formation and thrust force in drilling PCB and then optimizes the drilling parameters to decrease the burr formation and thrust force.

Details

Circuit World, vol. 39 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 6 November 2017

Rajkumar D, Ranjithkumar P, M.P. Jenarthanan and Sathiya Narayanan C

The purpose of this paper is to develop a statistical model for delamination and thrust forcing during drilling of carbon-fibre reinforced polymer (CFRP) composites using response…

Abstract

Purpose

The purpose of this paper is to develop a statistical model for delamination and thrust forcing during drilling of carbon-fibre reinforced polymer (CFRP) composites using response surface methodology (RSM) to determine the input parameters (drill speed, drill diameter and feed rate) that influences the output response (delamination and thrust force) in the machining of CFRP composite using solid carbide drill cutter.

Design/methodology/approach

Three factors, three levels central composite face centred (CCFC) design, is used to conduct the experiments on CFRP by carbide drill. The whole quality evaluation (delamination) was done by video measuring system to measure the width of maximum damage of the machined CFRP composite. The thrust forces during drilling are measured using digital multi-component cutting force (Make: IEICOS, Model: 652) dynamometer. The “Design Expert 7.0” is used to analyse the data collected graphically. An analysis of variance is carried out to validate the model and for determining the most significant parameter.

Findings

The response surface model is used to predict the input factors influencing the delamination and thrust force on the drilled surfaces of CFRP composite at different cutting conditions with the chosen range of 95 per cent confidence intervals. The analysis on the influences of the entire individual input machining parameters on the delamination and thrust force has been carried out using RSM. This investigation revealed that the drill diameter is the eminent factor which affects the responses.

Originality/value

In all, 0.3, 0.4 and 0.5 mm holes have been successfully made on CFRP using vertical machining center, whereas the previous researchers have not drilled hole size less than 1 mm in CFRP using vertical machining center.

Details

Pigment & Resin Technology, vol. 46 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 March 2016

Qinfen Lu, Huanwen Li, Xiaoyan Huang and Yunyue Ye

Due to the advantages of direct driven, high thrust density, and high efficiency, flux-switching linear motor (FSLM) is required for many applications, including aerospace and…

Abstract

Purpose

Due to the advantages of direct driven, high thrust density, and high efficiency, flux-switching linear motor (FSLM) is required for many applications, including aerospace and automotive. However, the vibration caused by detent force and difficulties in the assembly produced by the large normal force become the barriers that restrict its development. The paper aims to discuss these issues.

Design/methodology/approach

In order to improve the electromagnetic performance of double-sided multi-tooth FSLM (DMTFSLM), a yokeless DMTFSLM with moving primary is proposed and compared with normal DMTFSLM. Moreover, with theoretical analysis, the selection principle of slot-pole number combination is obtained. DMTFSLMs with four slot/pole combinations, 6s/16p, 6s/17p, 6s/19p, 6s/20p, are analyzed based on finite element analysis model. Finally, several parameters of this yokeless DMTFSLM have been optimized to obtain the better performance.

Findings

In yokeless DMTFSLM, it is found that the asymmetry of Back-EMF caused by the end-effect is eliminated, which leads to a better thrust force performance in comparison with the normal structure. The small attractive force between the secondary and the primary makes it easier for assembly and also can reduce the friction, which is more suitable for high-speed application. In addition, the best slot-pole combination rule is found through a simple theoretical analysis.

Originality/value

The yokeless DMTFSLM has excellent electromagnetic performance, such as high thrust density, negligible normal force, and small force ripple. It is a strong candidate for high-precision device.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 September 2020

Gökhan Sur and Ömer Erkan

Drilling of carbon fiber reinforced plastic (CFRP) composite plates with high surface quality are of great importance for assembly operations. The article aims to optimize the…

Abstract

Purpose

Drilling of carbon fiber reinforced plastic (CFRP) composite plates with high surface quality are of great importance for assembly operations. The article aims to optimize the drill geometry and cutting parameters to improve the surface quality of CFRP composite material. In this study, CFRP plates were drilled with uncoated carbide drill bits with standard and step geometry. Thus, the effects of standard and step drill bits on surface quality have been examined comparatively. In addition, optimum output parameters were determined by Taguchi, ANOVA and multiple decision-making methods.

Design/methodology/approach

Drill bit point angles were selected as 90°, 110° and 130°. In cutting parameters, three different cutting speeds (25, 50 and 75 m/min) and three different feeds (0.1, 0.15 and 0.2 mm/rev) were determined. L18 orthogonal sequence was used with Taguchi experimental design. Three important output parameters affecting the surface quality are determined as thrust force, surface roughness and delamination factor. For each output parameter, the effects of drill geometry and cutting parameters were evaluated. Input parameters affecting output parameters were analyzed using the ANOVA method. Output parameters were estimated by creating regression equations. Weights were determined using the analytic hierarchy process (AHP) method, and multiple output parameters were optimized using technique for order preference by Similarity to An ideal solution (TOPSIS).

Findings

It has been determined from the experimental results that step drills generate smaller thrust forces than standard drills. However, it has been determined that it creates greater surface roughness and delamination factor. From the Taguchi analysis, the optimum input parameters for Fz step tool geometry, 90° point angle, 75 m/min cutting speed and 0.1 mm/rev feed. For Fd, are standard tool geometry, 90° point angle, 25 m/min cutting speed and 0.1 mm/rev feed and for Ra, are standard tool geometry, 130° point angle, 25 m/min cutting speed and 0.1 mm/rev feed. ANOVA analysis determined that the most important parameter on Fd is the tip angle, with 56.33%. The most important parameter on Ra and Fz was found to be 40.53% and 77.06% tool geometry, respectively. As a result of the optimization with multiple criteria decision-making methods, the test order that gave the best surface quality was found as 4–1-9–5-8–17-2–13-6–16-18–15-11–10-3–12-14. The results of the test number 4, which gives the best surface quality, namely, the thrust force is 91.86 N, the surface roughness is 0.75 µm and the delamination factor is 1.043. As a result of experiment number 14, which gave the worst surface quality, the thrust force was 149.88 N, the surface roughness was 3.03 µm and the delamination factor was 1.163.

Practical implications

Surface quality is an essential parameter in the drilling of CFRP plates. Cutting tool geometry comes first among the parameters affecting this. Therefore, different cutting tool geometries are preferred. A comparison of these cutting tools is discussed in detail. On the other hand, thrust force, delamination factor and surface roughness, which are the output parameters that determine the surface quality, have been optimized using the TOPSIS and AHP method. In this way, this situation, which seems complicated, is presented in a plain and understandable form.

Originality/value

In the experiments, cutting tools with different geometries are included. Comparatively, its effects on surface quality were examined. The hole damage mechanism affecting the surface quality is discussed in detail. The results were optimized by evaluating Taguchi, ANOVA, TOPSIS and AHP methods together.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 March 2016

Qinfen Lu, Liren Huang, Yunyue Ye, Xiaoyan Huang and Youtong Fang

Due to the merits of direct driven, high thrust density and high efficiency, PM linear synchronous motor (PMLSM) is pretty suitable for the long-stroke ropeless lifter. However…

Abstract

Purpose

Due to the merits of direct driven, high thrust density and high efficiency, PM linear synchronous motor (PMLSM) is pretty suitable for the long-stroke ropeless lifter. However, the vibration caused by detent force and difficulty of maintenance become the barriers that restrict its application. The paper aims to discuss these issues.

Design/methodology/approach

In order to simplify structure and improve driving performance, a novel PMLSM with segmented armature core and end non-overlapping windings is proposed. The analytical formula of detent force is derived based on energy method and harmonic analysis, which is validated by two-dimensional finite element analysis (FEA). Moreover, with erected parametric FEA calculation, the selection principles of slot-pole number combination and interval distance to this novel structure are obtained. Finally, the heat dissipation ability of conventional PMLSM and novel PMLSM are compared through thermal analysis.

Findings

In novel PMLSM, it is found that the (3m+1) and (3m+2) order harmonic components of thrust force are eliminated, which leads to a better driving performance in comparison with the conventional structure. Furthermore, the good heat dissipation ability of novel structure makes it possible for higher thrust density, which is crucial for ropeless lifter.

Originality/value

The novel PMLSM has excellent driving performance, simple structure for maintenance, possibility of modular production and high thrust density. It is a strong candidate for long-stroke ropeless lifter.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 June 2022

Afaq Ahmad, Zahoor Ahmad, Abdullah Ullah, Naveed Ur Ur Rehman, Muhammad Israr, Muhammad Zia, Haider Ali and Ataur Rahman

This study aims to investigate and compare the characteristics of three topologies of moving-magnet linear oscillating actuator (LOA) based on their mover position. Positive…

63

Abstract

Purpose

This study aims to investigate and compare the characteristics of three topologies of moving-magnet linear oscillating actuator (LOA) based on their mover position. Positive aspects and consequences of every topology are demonstrated. Three topologies of axially magnetized moving-magnet LOA; outer mover, inner mover (IM) and dual stator (DS) are designed and examined. Due to its characteristically high thrust density and more mechanical strength, axially magnetized tubular permanent magnets (PMs) are used in these topologies.

Design/methodology/approach

LOAs are designed and optimized using parametric sweep, in term of design parameters and output parameters like thrust force, stroke and operating resonance frequency of the LOA. All the pros and cons of each topology are investigated and compared. Output parameters of the LOAs are compared using same size of the investigated LOAs. Mover mass, which plays a vital role in resonant operation, is analyzed for IM and DS designs. Investigated LOAs are compared with conventional designs of LOA for compressor in refrigeration system with regards of motor constant, stroke and thrust per PM mass.

Findings

This paper analyzes three topologies of moving-magnet LOAs. The basic difference between investigated LOAs is the radius of tubular-shaped mover from its central axis. All the design parameters are compared and concluded that thrust per PM mass of IMLOA is maximum. OMLOA provides maximum motor constant of value 180 N/A. DSLOA provides thrust force with motor constant 120 N/A and required intermediate materials of PMs. All the three designs give the best results in terms of motor constant and thrust per PM mass, compared to conventional designs of LOA.

Originality/value

This paper determines the impact of mover position from its central axis in a tubular-shaped moving-magnet LOA. This work is carried out in correspondence of latest papers of LOA.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 7000