Search results

1 – 10 of 237
Article
Publication date: 7 March 2016

Yihua Yao, Yi Chen, Qinfen Lu, Xiaoyan Huang and Yunyue Ye

Permanent magnet linear synchronous machines (PMLSMs) have large thrust ripple due to the longitudinal end effect caused by the finite length of the armature compared with rotary…

Abstract

Purpose

Permanent magnet linear synchronous machines (PMLSMs) have large thrust ripple due to the longitudinal end effect caused by the finite length of the armature compared with rotary machines. The purpose of this paper is to analyze the influence of electric loading on thrust ripple performances based on a 12 slots/14 poles (12S/14P) PMLSM. Furthermore, the method of skewed PMs to reduce thrust ripple is investigated based on multi slices 2D finite element (FE) models.

Design/methodology/approach

The thrust ripple of PMLSM under open-circuit condition results from the slotting and the longitudinal end effects. Therefore, periodical model has been designed to clarify the effect of the longitudinal end effect. Under on-load condition, the thrust ripple increases and exhibits an effective component of thrust force. To analyze the thrust ripple under on-load condition, frozen permeability (FP) technique is employed. In addition, the method of skewed PMs is analyzed in this paper to obtain more smooth thrust force performance. The effectiveness of skewing accounting for skew angles, step skew numbers and slot/pole number combinations was highlighted.

Findings

The longitudinal end effect dominates the thrust ripple of PMLSM in both cases, i.e., open-circuit and on-load conditions. Under on-load condition, the second harmonic component of thrust ripple related to flux linkage harmonics increases significantly. Moreover, the effectiveness of skewed PMs is largely reduced with the increase of magnetic saturation. At last, a proper skew angle and step skew number are obtained for the conventional PMLSM with fractional-slot winding.

Originality/value

By 60 electrical degrees and two or three step skewed PMs, the thrust ripple can be decreased to a tolerable limite for conventional PMLSM. The thrust ripple harmonics contributed by longitudinal end effect and flux linkage harmonics are analyzed, respectively, which is beneficial to exploring other techniques such as adding end auxiliary teeth to obtain lower thrust force pulsation.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 September 2018

Lufeng Zhang and Kai Wang

The purpose of this paper is to investigate the electromagnetic performances of the permanent magnet linear synchronous machines (PMLSM) with sine and third harmonic (SIN + 3rd…

Abstract

Purpose

The purpose of this paper is to investigate the electromagnetic performances of the permanent magnet linear synchronous machines (PMLSM) with sine and third harmonic (SIN + 3rd) shaping mover in comparison with the PMLSM with sine (SIN) shaping mover and conventional shaping mover.

Design/methodology/approach

The optimal amplitude of the injected third harmonic to re-shape the SIN + 3rd shaping permanent magnet (PM) for maximizing the thrust force is analytically derived and confirmed by finite element method (FEM). Furthermore, the PM edge thickness, the pole arc to pole pitch ratio and the tooth to slot ratio are optimized. It is found that the optimal amplitude of the injected third harmonic is one-sixth of the fundamental one, the optimal PM edge thickness, the pole arc to pole pitch ratio and the tooth to slot ratio are 0, 0.85 and 0.5 mm, respectively. In addition, the electromagnetic performances are analyzed and quantitatively compared for the PMLSM with SIN + 3rd shaping mover, SIN shaping mover and conventional shaping mover.

Findings

The average thrust force and efficiency of the PMLSM with SIN + 3rd shaping mover are improved significantly, while the thrust ripple is not increased, comparing to those of the PMLSM with SIN shaping mover. Meanwhile, the thrust ripple is lower than that of the conventional shaping mover.

Research limitations/implications

The purely sinusoidal currents are applied in this analysis and the influences of harmonics in the current on electromagnetic performances are not considered.

Originality/value

This paper presents a PMLSM with SIN + 3rd shaping mover to improve the thrust force and efficiency without increasing the thrust ripple, considering the effects of the amplitude of the injected third harmonic to re-shape the SIN + 3rd shaping PM, the PM edge thickness, the pole arc to pole pitch ratio and the tooth to slot ratio.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Qinfen Lu, Huanwen Li, Xiaoyan Huang and Yunyue Ye

Due to the advantages of direct driven, high thrust density, and high efficiency, flux-switching linear motor (FSLM) is required for many applications, including aerospace and…

Abstract

Purpose

Due to the advantages of direct driven, high thrust density, and high efficiency, flux-switching linear motor (FSLM) is required for many applications, including aerospace and automotive. However, the vibration caused by detent force and difficulties in the assembly produced by the large normal force become the barriers that restrict its development. The paper aims to discuss these issues.

Design/methodology/approach

In order to improve the electromagnetic performance of double-sided multi-tooth FSLM (DMTFSLM), a yokeless DMTFSLM with moving primary is proposed and compared with normal DMTFSLM. Moreover, with theoretical analysis, the selection principle of slot-pole number combination is obtained. DMTFSLMs with four slot/pole combinations, 6s/16p, 6s/17p, 6s/19p, 6s/20p, are analyzed based on finite element analysis model. Finally, several parameters of this yokeless DMTFSLM have been optimized to obtain the better performance.

Findings

In yokeless DMTFSLM, it is found that the asymmetry of Back-EMF caused by the end-effect is eliminated, which leads to a better thrust force performance in comparison with the normal structure. The small attractive force between the secondary and the primary makes it easier for assembly and also can reduce the friction, which is more suitable for high-speed application. In addition, the best slot-pole combination rule is found through a simple theoretical analysis.

Originality/value

The yokeless DMTFSLM has excellent electromagnetic performance, such as high thrust density, negligible normal force, and small force ripple. It is a strong candidate for high-precision device.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 March 2018

Jinlin Gong, Frédéric Gillon and Nicolas Bracikowski

This paper aims to investigate three low-evaluation-budget optimization techniques: output space mapping (OSM), manifold mapping (MM) and Kriging-OSM. Kriging-OSM is an original…

Abstract

Purpose

This paper aims to investigate three low-evaluation-budget optimization techniques: output space mapping (OSM), manifold mapping (MM) and Kriging-OSM. Kriging-OSM is an original approach having high-order mapping.

Design/methodology/approach

The electromagnetic device to be optimally sized is a five-phase linear induction motor, represented through two levels of modeling: coarse (Kriging model) and fine.The optimization comparison of the three techniques on the five-phase linear induction motor is discussed.

Findings

The optimization results show that the OSM takes more time and iteration to converge the optimal solution compared to MM and Kriging-OSM. This is mainly because of the poor quality of the initial Kriging model. In the case of a high-quality coarse model, the OSM technique would show its domination over the other two techniques. In the case of poor quality of coarse model, MM and Kriging-OSM techniques are more efficient to converge to the accurate optimum.

Originality/value

Kriging-OSM is an original approach having high-order mapping. An advantage of this new technique consists in its capability of providing a sufficiently accurate model for each objective and constraint function and makes the coarse model converge toward the fine model more effectively.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 October 2018

Monir Sadat Hosseini, Hamid Javadi and Sadegh Vaez-Zadeh

This paper aims to investigate analytical electromagnetic fields and thrust ripples representation of linear flux-switching motors with simple modulated secondary referred as…

Abstract

Purpose

This paper aims to investigate analytical electromagnetic fields and thrust ripples representation of linear flux-switching motors with simple modulated secondary referred as segmented secondary linear flux-switching motor (SSLFSM).

Design/methodology/approach

SSLFSMs are applicable to transportation systems like Maglev due to their simple and consequently low-cost secondary structures and high force density. However, they have high thrust ripples that deteriorate a smooth motion in rail transportation systems. Therefore, derivation of accurate analytical models for thrust ripples minimization of the motor is essential, which is absent in the literature. In this paper, a two-dimensional analytical model is developed for this motor. The model is based on transfer relations and Fourier theory used for solving a two-dimensional boundary value problem. Certain model regions are determined by considering actual machine structure and observing specific rules. Analytical solution of Maxwell and Poison equations are then obtained in the regions.

Finding

Using the presented modeling method, the airgap electromagnetic field distribution and developed thrust of the motor are calculated for different positions of the motor as well as its thrust ripples. They are verified by the results obtained from finite element method. Also, the analytical results are compared with the presented experimental results.

Originality/value

This paper has analytically presented the airgap electromagnetic field distribution, thrust and thrust ripples of the SSLFSMs. This modeling is essential in thrust ripples minimization of the motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 November 2015

Qinfen Lu, Yanxin Li, Yunyue Ye, J.T. Chen and Z.Q. Zhu

Due to linear structure, linear switched flux permanent magnet machines (LSFPMMs) also may have odd pole primary, such as 9, 15, 21, etc., without unbalanced magnetic force in…

Abstract

Purpose

Due to linear structure, linear switched flux permanent magnet machines (LSFPMMs) also may have odd pole primary, such as 9, 15, 21, etc., without unbalanced magnetic force in equivalent rotary machines. The paper aims to discuss these issues.

Design/methodology/approach

In order to increase the thrust force density, the influence of some major design parameters, including split ratio, PM thickness, primary slot width and secondary pole width, are investigated by finite element analysis. For reducing the thrust force ripple under on-load condition, the end auxiliary teeth are adopted and their positions are also optimized.

Findings

This novel 9/10 primary/secondary poles LSFPMM has high average thrust force and low thrust force ripple by optimization. The results demonstrate that the odd pole primary may be a good candidate for long-stroke linear direct drive application.

Originality/value

A novel 9/10 primary/secondary poles linear switched flux permanent magnet machine is developed in this paper. The similar conclusions could be obtained for other LSFPMMs with odd pole primary.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Jiameng Shi, Hao Kong, Liren Huang, Qinfen Lu and Yunyue Ye

Nowadays, to simplify manufacture process and improve fault-tolerant capability, more and more modular electrical machines are being applied in industrial areas. The purpose of…

Abstract

Purpose

Nowadays, to simplify manufacture process and improve fault-tolerant capability, more and more modular electrical machines are being applied in industrial areas. The purpose of this paper is to investigate a novel modular single-sided flat permanent magnet linear synchronous motor (PMLSM), which adopts segmented armature with the required flux gaps between segments to enhance the performance.

Design/methodology/approach

Using 2D finite element analysis, the performances, such as open-flux linkage, back-EMF, average thrust force, thrust ripple, etc., are compared in different values of flux gaps, as well as different slot/pole number combinations (mainly odd numbers of poles). Finally, to show the difference of linear motor from rotary one, the detailed comparison is made between modular PMLSM and rotary PMSM.

Findings

Due to flux gaps, it is found the electromagnetic performances are worsened along with flux gap width increasing to modular PMLSMs having slot number higher than pole number, but some aspects of performances such as winding factor, open-circuit flux linkage, back-EMF and average thrust can be improved to those having slot number lower than pole number. Due to the end effect of linear format, the thrust ripple is not significantly improved.

Originality/value

It is concluded the proper flux gaps can be chosen to improve the performance of PMLSM with certain slot/pole combinations. A new structure of 12-slot-13-pole (hereinafter referred to as 12s/13p) PMLSM with fractional slot and alternative-teeth wound winding is designed.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Qinfen Lu, Liren Huang, Yunyue Ye, Xiaoyan Huang and Youtong Fang

Due to the merits of direct driven, high thrust density and high efficiency, PM linear synchronous motor (PMLSM) is pretty suitable for the long-stroke ropeless lifter. However…

Abstract

Purpose

Due to the merits of direct driven, high thrust density and high efficiency, PM linear synchronous motor (PMLSM) is pretty suitable for the long-stroke ropeless lifter. However, the vibration caused by detent force and difficulty of maintenance become the barriers that restrict its application. The paper aims to discuss these issues.

Design/methodology/approach

In order to simplify structure and improve driving performance, a novel PMLSM with segmented armature core and end non-overlapping windings is proposed. The analytical formula of detent force is derived based on energy method and harmonic analysis, which is validated by two-dimensional finite element analysis (FEA). Moreover, with erected parametric FEA calculation, the selection principles of slot-pole number combination and interval distance to this novel structure are obtained. Finally, the heat dissipation ability of conventional PMLSM and novel PMLSM are compared through thermal analysis.

Findings

In novel PMLSM, it is found that the (3m+1) and (3m+2) order harmonic components of thrust force are eliminated, which leads to a better driving performance in comparison with the conventional structure. Furthermore, the good heat dissipation ability of novel structure makes it possible for higher thrust density, which is crucial for ropeless lifter.

Originality/value

The novel PMLSM has excellent driving performance, simple structure for maintenance, possibility of modular production and high thrust density. It is a strong candidate for long-stroke ropeless lifter.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2018

Ruiwu Cao, Yi Jin, Yanze Zhang and Ming Cheng

The purpose of this paper is to propose the complementary design rules, give a quantitative comparison and analyze the force production mechanism of two kinds of primary wound…

Abstract

Purpose

The purpose of this paper is to propose the complementary design rules, give a quantitative comparison and analyze the force production mechanism of two kinds of primary wound field flux-switching linear (PWFFSL) motors.

Design/methodology/approach

PWFFSL motors have the merits of no use of rare-earth magnet, low cost and a wide operation range in which the armature windings and the field windings are all located at the short primary mover and the secondary is very robust. Hence, the PWFFSL motor is ideal for rail transportation systems which need a long stator and a wide speed range. To overcome the disadvantages of the existing PWFFSL motors, new complementary design rules will be proposed. Also, to offer a better PWFFSL motor for the rail transportation systems, it is necessary to investigate different structures of PWFFSL motors and give a comprehensive comparison. To predict the force performance of two kinds of PWFFSL motors with different secondary types, their flux density analysis and force production mechanism will be presented and compared.

Findings

The comparison result shows that the PWFFSL motor with toothed secondary can offer larger thrust force, higher force density and higher efficiency, whereas the PWFFSL motor with segmented secondary has the merits of lower force ripple, less use of stator iron, higher power factor and less critical saturation.

Research limitations/implications

Many PWFFSL motors with different primary/secondary pole pitches based on the proposed design principle have not been considered in this paper.

Originality/value

This paper has presented the air-gap flux analysis, proposed the complementary design rules for two kinds of PWFFSL motors with different secondary types and compared the electromagnetic performance of the two motors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 May 2022

Guozhen Zhang, Rui Nie, Jikai Si, Xiaohui Feng and Changli Wang

This study aims to unveil the generation mechanism of the thrust force in a tubular flux-switching permanent magnet (PM) linear (TFSPML) machine; the operation principle of the…

Abstract

Purpose

This study aims to unveil the generation mechanism of the thrust force in a tubular flux-switching permanent magnet (PM) linear (TFSPML) machine; the operation principle of the TFSPML machine is analyzed.

Design/methodology/approach

First, the air-gap flux density harmonic characteristics excited by PMs and armature windings are investigated and summarized based on a simple magnetomotive force (MMF)-permeance model. Then, the air-gap field modulation theory is applied in analyzing the air-gap flux density harmonics that contribute to the electromagnetic force. In addition, a simple method for separating the end force of the TFSPML machine is proposed, which is a significant foundation for the comprehensive analysis of this type of machine. As a result, the operation principle of the TFSPML machine is thoroughly revealed.

Findings

The analysis shows that the average electromagnetic force is mainly contributed by the air-gap dominant harmonics, and the thrust force ripple is mainly caused by the end force.

Originality/value

In this paper, the operation principle of the TFSPML machine is analyzed from the perspective of air-gap field modulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 237