Search results

1 – 7 of 7
Article
Publication date: 6 June 2024

Reannan Boisvert, Meredith McQuerry and Sheryl Schofield

Clothing fit, including garment ease and drape, impacts the volume of air between clothing layers and the body, directly affecting the amount of heat that can be transferred…

Abstract

Purpose

Clothing fit, including garment ease and drape, impacts the volume of air between clothing layers and the body, directly affecting the amount of heat that can be transferred through a multi-layer clothing system. As most acute firefighting fatalities are caused by overexertion and heat strain, the purpose of this research was to determine the impact of ease allowances on air gaps in structural firefighting turnout suits and their subsequent effect on total heat loss (THL) when worn on a three-dimensional form.

Design/methodology/approach

Four turnout suits with chest ease allowances of 6″, 8″, 10″ and 12″ were evaluated using an ANDI dynamic sweating thermal manikin. The average predicted manikin THL of each ensemble was calculated from the thermal and evaporative resistance measurements. A three-dimensional (3D) body scanner was utilized to calculate the distance and volume of clothing air gaps between the base layer and each turnout suit.

Findings

Results demonstrate that reductions in upper body ease measurements trend towards statistically significant increases in THL, to a point, with fit limitations being reached before benefits can be significantly realized. An increase in standard chest ease measurements significantly decreased heat loss, even when forced convection from movement was considered.

Originality/value

This is the first article of its kind to explore the relationship between garment ease and predicted manikin THL, especially for fire service protective clothing. Findings indicate a valid recommendation for turnout gear designers and manufacturers to optimize clothing fit to improve breathability and potentially reduce incidents of heat strain in the fire service.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 May 2024

Yijie Zhang, Ziyi Guo, Jiangang Wei and Yijun Li

The aim of this paper is to achieve a reasonable microclimate between clothing and the human body and optimize the custom dress pattern.

Abstract

Purpose

The aim of this paper is to achieve a reasonable microclimate between clothing and the human body and optimize the custom dress pattern.

Design/methodology/approach

An interactive design method of 3D modeling, virtual try-on and heat transfer simulation are used. First, a 3D dress is designed with nonuniform rational B-splines curves and tried on virtually. After that, the heat transfer in the body-air-clothing microclimate and temperature distributions on the clothing surface are obtained. Based on the heat transfer in the body-air-clothing system, we design a method to improve the thermal comfort by optimizing the garment pattern digitally. Then, this paper utilized two heat transfer validating indexes to quantify the improvement of thermal comfort, and evaluate the modified model of dress.

Findings

The microclimate under the clothing is varied with the air gap distance, and the heat transfer on the area of the clavicle, bust point and front abandon are higher than other parts due to the narrow air gaps. In view of thermal comfort, the pattern optimization changes the distance ease and reforms the air circulating efficiency. The mean heat transfer and its standard variance are changing by about 10% and more than 20%. Thus, the heat transfer evaluation indexes are suitable to represent the heat transfer and thermal comfort in the microclimate system.

Research limitations/implications

It can be concluded that the methodology proposed in this paper has the advantage of interactive design, 3D visualization and local heat transfer simulation. This technology meets the need of personalized customization and well-considered garment and has broad application prospects.

Originality/value

This study demonstrates that modifying the distance ease on body key girths based on heat transfer is a reliable way to improve thermal comfort. This method meets the consumers’ demand of the comfort of body-fit clothing under the condition of daily activities.

Highlights

  • 3D air gap distributions.

  • Heat transfer varies with air gap distance.

  • Thermal comfort can be improved by optimizing garment pattern.

3D air gap distributions.

Heat transfer varies with air gap distance.

Thermal comfort can be improved by optimizing garment pattern.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 August 2024

Sibel Kaplan, Dilara Melek Demirbek and Nazife Korkmaz Memis

Personal thermal management by controlling the radiation energies of both the body and the sun can be used in all environments and contributes to sustainability components with…

27

Abstract

Purpose

Personal thermal management by controlling the radiation energies of both the body and the sun can be used in all environments and contributes to sustainability components with the advantages of energy saving, low chemical usage and comfort enhancements under dynamic conditions. In this study, passive radiative heating nanocomposite films were produced using sodium alginate as the matrix and zinc oxide (ZnO) and aluminum oxide (Al2O3) nanoparticles as nanofillers having far infrared radiation reflecting, hence passive heating functions.

Design/methodology/approach

Nanocomposite film solutions were prepared by stirring sodium alginate powder, deionized water, ZnO and Al2O3 nanoparticles (20% wt of matrix polymer) with surfactant using magnetic and ultrasonic stirrers in turn. Films produced within Petri dishes after drying at room temperature were analyzed by FT-IR, UV-VIS-NIR spectroscopy and SEM for chemical, radiation management and morphological characteristics, respectively. Emissivity values giving idea about the heating performances of the films were determined with an IR camera and a hotplate system. Moreover, direct heating performances were measured by the hotplate system including a far-infrared lamp.

Findings

Results showed that the emissivity of the films increased by approximately 18% and 16% with ZnO and Al2O3 nanoparticles, respectively. Moreover, NaAlg–Al2O3 nanocomposite film exhibited passive radiative heating performance of 3.58 °C, higher than the heating performance of NaAlg–ZnO nanocomposite film which is 2.97 °C when compared to the reference NaAlg film. These results indicate that both NaAlg–ZnO and especially NaAlg–Al2O3 nanocomposite films have excellent far-infrared emission and absorption properties ensuring a significant heating effect.

Originality/value

In addition to other clothing types, the heating performance obtained with the produced nanocomposite structures may be applied to different types of cosmetic/medical applications (beauty mask, wound dresses, etc.) enabling skincare/healing with the advantage of the sodium alginate matrix.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 August 2024

Wanwan Wang and Mengmeng Zhao

The purpose of this paper is to determine the effect of clothing fabrics, sizes and air ventilation rate on the volume and thickness of the air gap under the air ventilation…

Abstract

Purpose

The purpose of this paper is to determine the effect of clothing fabrics, sizes and air ventilation rate on the volume and thickness of the air gap under the air ventilation garments (AVGs).

Design/methodology/approach

The geometric models of the human body and clothing were obtained by using a 3D body scanner. Then the distribution of the volume and thickness of the air gap for four clothing fabrics and three air ventilation rates (0L/S, 12L/S and 20L/S) were calculated by Geomagic software. Finally, a more suitable fabric was selected from the analysis to compare the distribution of the air gap entrapped for four clothing sizes (S, M, L and XL) and the three air ventilation rates.

Findings

The results show that the influence of air ventilation rate on the air gap volume and thickness is more obvious than that of the clothing fabrics and sizes. The higher is the air ventilation rate, the thicker is the air gap entrapped, and more evenly distributed is the air gap. It can be seen that the thickness of the air gap in the chest does not change significantly with the changes of the air ventilation rates, clothing fabrics and sizes, while the air gap in the waist is affected significantly.

Originality/value

This research provides a better understanding of the distribution of the air gap entrapped in ventilated garments, which can help in designing the optimal air gap dimensions and thus provide a basis and a reference for the design of the AVGs.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 April 2024

Jacqueline Humphries, Pepijn Van de Ven, Nehal Amer, Nitin Nandeshwar and Alan Ryan

Maintaining the safety of the human is a major concern in factories where humans co-exist with robots and other physical tools. Typically, the area around the robots is monitored…

47

Abstract

Purpose

Maintaining the safety of the human is a major concern in factories where humans co-exist with robots and other physical tools. Typically, the area around the robots is monitored using lasers. However, lasers cannot distinguish between human and non-human objects in the robot’s path. Stopping or slowing down the robot when non-human objects approach is unproductive. This research contribution addresses that inefficiency by showing how computer-vision techniques can be used instead of lasers which improve up-time of the robot.

Design/methodology/approach

A computer-vision safety system is presented. Image segmentation, 3D point clouds, face recognition, hand gesture recognition, speed and trajectory tracking and a digital twin are used. Using speed and separation, the robot’s speed is controlled based on the nearest location of humans accurate to their body shape. The computer-vision safety system is compared to a traditional laser measure. The system is evaluated in a controlled test, and in the field.

Findings

Computer-vision and lasers are shown to be equivalent by a measure of relationship and measure of agreement. R2 is given as 0.999983. The two methods are systematically producing similar results, as the bias is close to zero, at 0.060 mm. Using Bland–Altman analysis, 95% of the differences lie within the limits of maximum acceptable differences.

Originality/value

In this paper an original model for future computer-vision safety systems is described which is equivalent to existing laser systems, identifies and adapts to particular humans and reduces the need to slow and stop systems thereby improving efficiency. The implication is that computer-vision can be used to substitute lasers and permit adaptive robotic control in human–robot collaboration systems.

Details

Technological Sustainability, vol. 3 no. 3
Type: Research Article
ISSN: 2754-1312

Keywords

Article
Publication date: 1 August 2024

Qing Li, Chulin Li, Dongdong Dong, Huimin Han, Guangwu Sun, Xiaona Chen, Hongyan Hu, Wenfeng Hu, Hong Xie and Yanmei Li

This study aims to evaluate how the structure of medical compression stockings, including three compression levels and five cross-sections from the ankle to the thigh part, will…

Abstract

Purpose

This study aims to evaluate how the structure of medical compression stockings, including three compression levels and five cross-sections from the ankle to the thigh part, will be changed after washing in different conditions and further investigate the effect of the washing parameters on the medical compression stockings.

Design/methodology/approach

By washing medical compression stockings in different conditions and measuring the structures (including the density, the girth, the transversal and lengthwise dimension, the weight per unit area and the thickness) of medical compression stockings from the knee to the thigh part.

Findings

It was concluded that the density, the weight per unit and the thickness increase and the girth, the transversal and lengthwise dimension, the weight per unit and the thickness decrease. The change degree of Class one and Class two is greater than Class 3. Moreover, the washing temperature is the most significant factor affecting all the structures of medical compression stockings. Meanwhile, the mechanical actions of the washing machine, like drum speed and washing time, also influence different medical compression stockings structures to different degrees.

Research limitations/implications

The washing parameter not only includes the temperature and washing cycles but also has other factors, such as the drum speed and washing time. In addition, different kinds of factors will be influenced by each other.

Originality/value

This study can provide consumers advices on the washing of medical compression stockings, and attribute to the optimization of materials and structures to maintain its properties for manufacturers.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 November 2023

Elif Tanrikulu and Ibrahim Taylan Dortyol

Social exclusion is a complicated psychological phenomenon with behavioral ramifications that influences consumers' lifestyles and behaviors. In contrast, anthropomorphism is a…

Abstract

Purpose

Social exclusion is a complicated psychological phenomenon with behavioral ramifications that influences consumers' lifestyles and behaviors. In contrast, anthropomorphism is a phenomenon that marketing strategists employ and that occurs in customers' lives as a result of social isolation. The literature discusses these two complicated structures as ones that require investigation based on consumer judgments. The purpose of the current study is to understand the fundamental motivations that underlie the propensity for anthropomorphizing in people who suffer social isolation through their pets.

Design/methodology/approach

To look into the motivations driving these themes, a study technique with three distinct components was created. Cyberball was employed as a technique to manipulate social exclusion in the initial stage of this research methodology. Two scenarios, one of which had an anthropomorphizing tendency and the other of which did not, were presented to participants who had suffered social exclusion and advanced to the second phase in order to determine the anthropomorphizing tendency. The Attachment to Pets Scale (LAPS), which Johnson et al. (1992) created based on the social support provided by pets, was utilized while creating the scenarios. The Zaltman method was applied as an interviewing technique in the third stage of the research design, with the interviewees being guided by visuals that reflected their emotions and thoughts.

Findings

The results of the data analysis were evaluated in light of social psychology. A more thorough expression of the complex relationship between anthropomorphism and those who experience social exclusion has been made. The findings showed that when people anthropomorphize their pets in response to feelings of social exclusion, the motivations that emerge include pure love, loyalty, animals' need for a human, living creature and embracing. The study emphasizes that these ideas will be helpful in customers' interactions with anthropomorphic objects.

Practical implications

As a contribution to the literature, the study findings offer the five major motivations underpinning these beliefs. These findings may help marketing scientists comprehend social exclusion and anthropomorphism, thereby benefiting the individual and society.

Originality/value

The majority of research in the literature (Chen et al., 2017; Epley et al., 2008; Eyssel and Reich, 2013; Waytz et al., 2019) verified that people who were socially excluded would use anthropomorphism, but no studies were discovered about the motivations outlined in the current study. The results of this investigation should add to the body of knowledge in this area. The pet was employed as an anthropomorphism tool in the current study because it is the object that a person chooses to anthropomorphize deliberately and independently. It adds to the study's originality by explaining in the individual's own terminology how he will feel as a result of his social isolation, how he will make up for it and potential responses he may have. In addition to all of these contributions, the study's primary goal of analyzing the motivations behind anthropomorphism yields significant findings that are relevant to both industry and academic research.

Details

Qualitative Research Journal, vol. 24 no. 4
Type: Research Article
ISSN: 1443-9883

Keywords

1 – 7 of 7