Search results

1 – 2 of 2
Article
Publication date: 5 August 2020

Akshita Agrawal and Sheetal Chopra

This paper aims to extract the dye colourant from teak leaves using different aqueous mediums (Alkaline, Neutral and Acidic); to characterize the dye in terms of yield %; ash…

258

Abstract

Purpose

This paper aims to extract the dye colourant from teak leaves using different aqueous mediums (Alkaline, Neutral and Acidic); to characterize the dye in terms of yield %; ash content and moisture content; to standardize the conditions of application of dye extracted from teak leaves on selected natural and synthetic fabrics using selected natural and chemical mordants; to assess the colour value (K/S, L*, c*/ h*, a*, b*) and fastness properties of the dyed samples in terms of wash, rub, light and perspiration fastness; and to develop dyed and printed designs using combinations of mordant and extracted dye.

Design/methodology/approach

Stage 1 – Extraction of dye from teak leaves; and characterization of dye: yield% ash content and moisture content. Stage 2 – Preparation of fabrics for dyeing; optimization of mordanting parameters using pre mordanting method followed by post mordanting; and optimization of dyeing parameters. Stage 3 – Testing of dyed fabric – Colour Measurement; K/S L*a*b*/L*c*h*; fastness properties; wash fastness done in the Laundrometer using ISO 2 standard test method; crock fastness done by Crockmeter using AATCC 116–1995 test method; perspiration fastness tested by perspirometer using AATCC 15– 2007 test method; and light fastness assessment in Mercury Bulb Tungsten Filament (MBTF) light fastness tester using AATCC Test Method 16–2004.

Findings

The findings of the study show that waste teak leaves can be used as an effective dye for natural as well as synthetic fabrics giving a wide range of colours on wool, silk and nylon. The maximum relative colour strength of the extracted dye on unmordanted dyed samples was found to be at pH 5 on wool and silk and at pH 7 on nylon. A range of shades was obtained with the use of different mordants. The extracted dye showed moderate to good fastness properties in terms of light, wash, rub and perspiration on wool and silk and excellent on nylon. Fastness properties were found to improve with the application of mordants both as pre and post method. Various combinations of mordants and dye result in obtaining pleasing and harmonious colours which were used aesthetically for printing.

Research limitations/implications

Due to time constrains, extraction in an organic medium could not be done, which could be a further scope for study.

Practical implications

Dyeing using teak leaves is a step towards sustainability and effective waste utilization with promising potential for application on natural as well as synthetic fabrics. Good colour with added properties will provide excellent solutions for eco-friendly methods of dyeing.

Social implications

This paper demonstrates the new possibilities offered by innovative uses of by-products of the timber industry and open good prospects for alternatives to synthetic colourants and new markets for the textile industry. It offers a new tool for the development of slow fashion.

Originality/value

It is a common practice to prune the tree branches to improve wood quality; thus, leaves are easily available as by product from pruning and also from wood harvesting. In the present study, waste teak leaves (Tectona grandis L.) were used for the extraction of dye.

Details

Research Journal of Textile and Apparel, vol. 24 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 8 February 2018

Ismail Ismail, Muhammad Sohail, Hammad Gilani, Anwar Ali, Kiramat Hussain, Kamran Hussain, Bhaskar Singh Karky, Faisal Mueen Qamer, Waqas Qazi, Wu Ning and Rajan Kotru

The purpose of the study is to analyse the occurrence and distribution of different tree species in Gilgit-Baltistan, Pakistan, as a baseline for further inventories, and estimate…

9673

Abstract

Purpose

The purpose of the study is to analyse the occurrence and distribution of different tree species in Gilgit-Baltistan, Pakistan, as a baseline for further inventories, and estimate the biomass per species and plot. Furthermore, it aims to measure forest biodiversity using established formulae for tree species diversity index, richness, evenness and accumulative curve.

Design/methodology/approach

Field data were collected, including stratification of forest sample plots. Statistical analysis of the data was carried out, and locally appropriate allometric equations were applied for biomass estimation.

Findings

Representative circular 556 forest sample plots of 1,000 m2 contained 13,135 trees belonging to nine tree species with a total aboveground biomass of 12,887 tonnes. Sixty-eight per cent of the trees were found between 2,600 and 3,400 masl; approximately 63 per cent had a diameter at breast height equal to 30 cm, and 45 per cent were less than 12 m in height. The Shannon diversity index was 1.82, and Simpson’s index of diversity was 0.813.

Research limitations/implications

Rough terrain, long distances, harsh weather conditions and location of forest in steep narrow valleys presented challenges for the field crews, and meant that fieldwork took longer than planned.

Practical implications

Estimating biomass in Gilgit-Baltistan’s forests using locally developed allometric equations will provide transparency in estimates of forest reference levels, National Forest Monitoring System in Pakistan and devising Reducing Emissions from Deforestation and Forest Degradation national strategies and for effective implementation.

Originality/value

This paper presents the first detailed forest inventory carried out for the dry temperate and semi-arid cold region of Gilgit-Baltistan, Pakistan.

Details

International Journal of Climate Change Strategies and Management, vol. 10 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

1 – 2 of 2