Search results

1 – 10 of 18
Article
Publication date: 31 January 2024

Wiah Wardiningsih, Farhan Aqil Syauqi Pradanta, Ryan Rudy, Resty Mayseptheny Hernawati and Doni Sugiyana

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric…

Abstract

Purpose

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric produced using these fibres.

Design/methodology/approach

The fibres were extracted via a decortication method. The acquired intrinsic qualities of the fibres were used to assess the feasibility of using them in textile applications. The thermal bonding approach was used for the development of the non-woven fabric, using a hot press machine with low-melt polyester fibre as a binder.

Findings

The mean length of Curcuma longa fibres was determined to be 52.73 cm, with a fineness value of 4.00 tex. The fibres exhibited an uneven cross-sectional morphology, characterized by a diverse range of oval-shaped lumens. The fibre exhibited a tenacity of 1.45 g/denier and an elongation value of 4.30%. The fibres possessed a moisture regain value of 11.30%. The experimental non-woven fabrics had consistent weight and thickness, while exhibiting different properties in terms of tensile strength and air permeability, with Fabric C having the highest tensile strength and the lowest air permeability value.

Originality/value

The features of Curcuma longa fibre, obtained with the decortication process, exhibited suitability for textile applications. Three experimental non-woven fabrics comprising different compositions of Curcuma longa fibre and low-melt polyester fibre were produced. The tensile strength and air permeability properties of these fabrics were influenced by the composition of the fibres.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 15 February 2024

Manager Rajdeo Singh, Aditya Prakash Kanth, Madhuri Sawant and Rajesh Ragde

The present work highlights the outstanding properties of Cannabis sativa that can be harnessed for various utilitarian functions and its climate friendly properties.

Abstract

Purpose

The present work highlights the outstanding properties of Cannabis sativa that can be harnessed for various utilitarian functions and its climate friendly properties.

Design/methodology/approach

In this paper, the authors reviewed current research on all possible utilities from household work to manufacturing of various products that are environmentally sustainable. The authors have presented some of their research on this materials and also exploration of hemp as an archaeological material based on the findings from wall paintings of Ellora caves.

Findings

There are references of hemp use in mixing with earthen/lime plaster of western Indian monuments. Around 1,500 years of Ellora’s earthen plaster, despite harsh climatic conditions, survived due to the presence of hemp in the plaster that adds durability, fibrosity and its capacity to ward off insects and control humidity. Furthermore, the outstanding quality of Cannabis as carbon sequestrant was harnessed by Indians of ancient times in Ellora mural paintings.

Research limitations/implications

This work discusses some relevant literature on the potential use of hempcrete aligned with Agenda 2030 of sustainable development goals.

Practical implications

There are several research going on in producing sustainable materials using hemp that have the least environmental impact and can provide eco-friendly solutions.

Social implications

The authors impress upon the readers about multifarious utility of the hemp and advices for exploration of this material to address many environmental issues.

Originality/value

This paper presents both review of the existing papers and some components coming directly from their laboratory investigations.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 2 April 2024

Shilpi Aggarwal

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial…

Abstract

Purpose

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial attention in food, pharmaceutical, textile, cosmetics, etc. owing to their health and environmental benefits. The present study aims to focus on the elimination of the use of synthetic dyes and provides brief information about natural dyes, their sources, extraction procedures with characterization and various advantages and disadvantages.

Design/methodology/approach

In producing natural colors, extraction and purification are essential steps. Various conventional methods used till date have a low yield, as these consume a lot of solvent volume, time, labor and energy or may destroy the coloring behavior of the actual molecules. The establishment of proper characterization and certification protocols for natural dyes would improve the yielding of natural dyes and benefit both producers and users.

Findings

However, scientists have found modern extraction methods to obtain maximum color yield. They are also modifying the fabric surface to appraise its uptake behavior of color. Various extraction techniques such as solvent, aqueous, enzymatic and fermentation and extraction with microwave or ultrasonic energy, supercritical fluid extraction and alkaline or acid extraction are currently available for these natural dyes and are summarized in the present review article.

Originality/value

If natural dye availability can be increased by the different extraction measures and the cost of purified dyes can be brought down with a proper certification mechanism, there is a wide scope for the adoption of these dyes by small-scale dyeing units.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 April 2024

David A. Kirby and Felicity Healey-Benson

This study aims to develop an entrepreneurial business model capable of addressing and preventing the exploitation and inequality that traditionally have resulted from…

Abstract

Purpose

This study aims to develop an entrepreneurial business model capable of addressing and preventing the exploitation and inequality that traditionally have resulted from entrepreneurship, particularly in emerging economies.

Design/methodology/approach

The research uses systems thinking, the first law of cybernetics, and the principles of harmony to formulate a systemic solution to the problem, which it exemplifies via six purposefully selected short cases drawn from diverse industry sectors and economies.

Findings

This paper demonstrates how the conventional model of entrepreneurship, often associated with colonial exploitation and resultant inequalities, can be transformed into a triple bottom line model—harmonious entrepreneurship – that integrates the traditional economic, eco-, humane, and social approaches and creates a synergy where profit, planet, and people are in harmony. The model challenges the profit maximisation/shareholder value doctrine of business success.

Research limitations/implications

Only six cases are presented here, and there is a need for further research in different political-economic contexts and industry sectors. Also, the way entrepreneurship is taught needs to change so that it addresses the sustainability challenge in general and the problem of inequality in particular.

Practical implications

There needs to be a change in the entrepreneurial mindset and the way entrepreneurship is taught and potential entrepreneurs are trained if entrepreneurship is to address the sustainability challenge in general and the problem of inequality in particular.

Originality/value

This is a novel approach to the study of entrepreneurship and its impact on inequality that shows how it can ameliorate and/or prevent inequality, particularly in emerging economies, by adopting a more holistic approach to business success and supplanting “having and needing” with “being and caring”.

Details

Journal of Entrepreneurship in Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4604

Keywords

Article
Publication date: 17 April 2024

Quratulain Mohtashim, Salma Farooq and Fareha Asim

The application of indigo dyes in the denim industries has been criticised due to the introduction of non-renewable oxidation products into the environment. Previous studies have…

Abstract

Purpose

The application of indigo dyes in the denim industries has been criticised due to the introduction of non-renewable oxidation products into the environment. Previous studies have investigated that reducing sugars can be used as green alternatives to sodium dithionite in the indigo dyeing of cotton fabric owing to their reduced and stable redox potential in the dye bath. The purpose of this study was to dye denim cotton fabric with indigo dye using various reducing sugars and alkalis. The use of sucrose and potassium hydroxide (KOH) for indigo dyeing has been explored for the first time.

Design/methodology/approach

A mixed factorial design with four variables including alkali, pH, number of dips and type of reducing sugar at different levels was studied to identify a significant correlation between the effect of these variables on the colour strength and fastness properties of the dyeings.

Findings

Investigations were made to examine the significant factors and interactions of the selected responses in the eco-friendly dyeing method. This process has the potential to reduce the load of sulphite and sulphate generated in the dyebath due to the use of a conventional reducing agent, sodium dithionite. The colour strength of the dyeing reduced with fructose was found to be better than other reducing sugars and significantly influenced by the number of dips, pH levels and the interaction between pH and reducing sugars. Using fructose for indigo dyeing with two dips at a pH of 11.5, using KOH as an alkali, results in higher colour strength values. The fastness properties of the indigo-dyed sample with reducing sugars ranging from fair to good or good to excellent. Specifically, colour change receives a rating of grey scale 3–4, staining 4–5, dry rubbing 4 and light fastness 3–4. These assessments hold true across various factors such as the type of reducing sugar, alkali, pH and the number of dips. The optimised parameters leading to improved colour strength and fastness properties are also discussed.

Originality/value

This dyeing technique is novel and a green alternative to dithionite denim dyeing. This process is found to be useful for indigo dyeing of denim fabric leading to reduced and stable redox potential in the dyebath and acceptable colour strength of the dyed fabric.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 27 February 2024

Quynh Do, Nishikant Mishra, Fernando Correia and Stephen Eldridge

Circular economy advocates innovations that upcycle wastes in the food supply chain to generate high added-value materials. These innovations are not only disruptive and green but…

Abstract

Purpose

Circular economy advocates innovations that upcycle wastes in the food supply chain to generate high added-value materials. These innovations are not only disruptive and green but also they are often initiated by startups, leading to the emergence of novel open-loop supply chains connecting actors in food and non-food sectors. While earlier research has highlighted the need to seek legitimacy for disruptive innovations to survive and grow, little is known about how these innovations occur and evolve across sectors. This paper aims to elaborate on this mechanism by exploring the function of the circular economy as a boundary object to facilitate legitimacy-seeking strategies.

Design/methodology/approach

An exploratory multiple-case research design is adopted and features food waste innovation projects with multi-tier supply chains consisting of a food producer, a startup and a buying firm. The study is investigated from the legitimacy and boundary object lenses.

Findings

The findings proposed a framework for the role of a boundary object in enabling legitimacy-seeking strategies for novel food waste innovations. First, the interpretative flexibility of the circular economy affords actors symbolic resources to conduct manipulation strategy to achieve cognitive legitimacy. Second, small-scale work arrangements enable creation strategy for the new supply chain to harness moral legitimacy. Finally, pragmatic legitimacy is granted via diffusion strategy enabled by scalable work arrangements.

Originality/value

This paper provides novel insights into the emergence of food waste innovation from a multi-tier supply chain perspective. It also highlights the key role of the boundary object in the legitimacy-seeking process.

Details

Supply Chain Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1359-8546

Keywords

Article
Publication date: 5 April 2024

K.G. Rumesh Samarawickrama, U.G. Samudrika Wijayapala and C.A. Nandana Fernando

The purpose of this study is to extract and characterize a novel natural dye from the leaves of Lannea coromandelica and the extraction with finding ways of dyeing cotton fabric…

Abstract

Purpose

The purpose of this study is to extract and characterize a novel natural dye from the leaves of Lannea coromandelica and the extraction with finding ways of dyeing cotton fabric using three mordants.

Design/methodology/approach

The colouring agents were extracted from the leaves of Lannea coromandelica using an aqueous extraction method. The extract was characterized using analysis methods of pH, gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared (FTIR), ultraviolet-visible (UV-vis) and cyclic voltammetry measurement. The extract was applied to cotton fabric samples using a non-mordant and three mordants under the two mordanting methods. The dyeing performance of the extracted colouring agent was evaluated using colour fastness properties, colour strength (K/S) and colour space (CIE Lab).

Findings

The aqueous dye extract showed reddish-brown colour, and its pH was 5.94. The GC-MS analysis revealed that the dye extract from the leaves of Lannea coromandelica contained active chemical compounds. The UV-vis and FTIR analyses found that groups influenced the reddish-brown colour of the dye extraction. The cyclic voltammetry measurements discovered the electrochemical properties of the dye extraction. The mordanted fabric samples showed better colour fastness properties than the non-mordanted fabric sample. The K/S and CIE Lab results indicate that the cotton fabric samples dyed with mordants showed more significant dye affinities than non-mordanted fabric samples.

Originality/value

Researchers have never discovered that the Lannea coromandelica leaf extract is a natural dye for cotton fabric dyeing. The findings of this study showed that natural dyes extracted from Lannea coromandelica leaf could be an efficient colouring agent for use in cotton fabric.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 April 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf D'Souza and Thirumaleshwara Bhat

This study explores how titanium oxide (TiO2) filler influences the specific wear rate (SWR) in flax fiber-reinforced epoxy composites (FFRCs) through a Taguchi approach. It aims…

Abstract

Purpose

This study explores how titanium oxide (TiO2) filler influences the specific wear rate (SWR) in flax fiber-reinforced epoxy composites (FFRCs) through a Taguchi approach. It aims to boost abrasive wear resistance by incorporating TiO2 filler, promoting sustainable and eco-friendly materials.

Design/methodology/approach

This study fabricates epoxy/flax composites with TiO2 particles (0–8 wt%) using hand layup. Composites were tested for wear following American Society for Testing and Materials (ASTM) G99-05. Statistical analysis used Taguchi design of experiments (DOE), with ANOVA identifying key factors affecting SWR in abrasive sliding conditions.

Findings

The study illuminates how integrating TiO2 filler particles into epoxy/flax composites enhances abrasive wear properties. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, wt% of TiO2 and sliding distance. Grit size has the highest effect at 43.78%, and wt% TiO2 filler contributes 15.61% to SWR according to ANOVA. Notably, the Taguchi predictive model closely aligns with experimental results, validating its reliability.

Originality/value

This paper integrates TiO2 filler and flax fibers to form a novel hybrid composite with enhanced tribological properties in epoxy composites. The use of Taguchi DOE and ANOVA offers valuable insights for optimizing control variables, particularly in natural fiber-reinforced composites (NFRCs).

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 January 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a…

Abstract

Purpose

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a Taguchi approach. The study aims to enhance the abrasive wear resistance of these composites by introducing TiO2 filler as a potential reinforcement, thus contributing to the development of sustainable and environmentally friendly materials.

Design/methodology/approach

This study focuses on the fabrication of epoxy/bamboo composites infused with TiO2 particles within the Wt.% range of 0–8 Wt.% using hand layup techniques. The resulting composites were subjected to wear testing according to ASTM G99-05 standards. Statistical analysis of the wear results was carried out using the Taguchi design of experiments (DOE). Additionally, an analysis of variance (ANOVA) was used to determine the influential control factors impacting the specific wear rate (SWR) and coefficient of friction (COF).

Findings

The study illuminates how integrating TiO2 filler enhances abrasive wear in epoxy/bamboo composites. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, Wt.% of TiO2 and sliding distance. Analysis of the COF identifies normal load as the primary influential factor, followed by grit, Wt.% of TiO2 and sliding distance. The Taguchi predictive model closely aligns with experimental results, validating its reliability. The morphological study revealed significant differences between the unfilled and TiO2-filled composites. The inclusion of TiO2 improved wear resistance, as evidenced by reduced surface damage and wear debris.

Originality/value

This research paper aims to integrate TiO2 filler and bamboo fibers to create an innovative hybrid composite material. TiO2 micro and nanoparticles show promise as filler materials, contributing to improved tribological properties of epoxy composites. The utilization of Taguchi’s DOE and ANOVA for statistical analysis provides valuable guidance for academic researchers and practitioners in optimizing control variables, especially in the context of natural fiber reinforced composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 February 2024

Sabiha Sezgin Bozok

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products…

Abstract

Purpose

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products. This study aims to determine the optimum conditions to increase abrasion resistance, to provide self-cleaning properties of denim fabrics and to examine the effects of these applications on other physical properties.

Design/methodology/approach

The denim samples were first treated with nonionic surfactant to increase their wettability. Three different amounts of the polymer dispersion and two different pH levels were selected for the experimental design. The finishing process was applied to the fabrics with pad-dry-cure method.

Findings

The presence of the coatings and the adhesion of TiO2 NPs to the surfaces were confirmed by scanning electron microscope and Fourier transform infrared spectroscopy analysis. It was ascertained that the most appropriate self-crosslinking acrylate amount and ambient pH level is 10 mL and “2”, respectively, for providing increased abrasion resistance (2,78%) and enhanced self-cleaning properties (363,4%) in the denim samples. The coating reduced the air permeability and softness of the denim samples. Differential scanning calorimetry and thermogravimetry analysis results showed that the treatments increased the crystallization temperatures and melting enthalpy values of the denim samples. Based on the thermal test results, it is clear that mass loss of the denim samples at 370°C decreased as the amount of self-crosslinking acrylate increased (at pH 3).

Originality/value

This study helped us to find out optimum amount of self-crosslinking acrylate and proper pH level for enhanced self-cleaning and abrasion strength on denim fabrics. With this finishing process, an environmentally friendly and long-life denim fabric was designed.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Access

Year

Last 3 months (18)

Content type

Earlycite article (18)
1 – 10 of 18