Search results

1 – 5 of 5
Article
Publication date: 29 January 2024

Francesco Romanò, Mario Stojanović and Hendrik C. Kuhlmann

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the…

Abstract

Purpose

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the surrounding ambient gas.

Design/methodology/approach

Numerical solutions for the two-fluid model are computed covering a wide parametric space, making a total of 2,800 numerical flow simulations. Based on the computed data, a reduced single-fluid model for the liquid phase is devised, in which the heat transfer between the liquid and the gas is modeled by Newton’s heat transfer law, albeit with a space-dependent Biot function Bi(z), instead of a constant Biot number Bi.

Findings

An explicit robust fit of Bi(z) is obtained covering the whole range of parameters considered. The single-fluid model together with the Biot function derived yields very accurate results at much lesser computational cost than the corresponding two-phase fully-coupled simulation required for the two-fluid model.

Practical implications

Using this novel Biot function approach instead of a constant Biot number, the critical Reynolds number can be predicted much more accurately within single-phase linear stability solvers.

Originality/value

The Biot function for thermocapillary liquid bridges is derived from the full multiphase problem by a robust multi-stage fit procedure. The derived Biot function reproduces very well the theoretical boundary layer scalings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 November 2023

Heping Liu, Sanaullah, Angelo Vumiliya and Ani Luo

The aim of this article is to obtain a stable tensegrity structure by using the minimum knowledge of the structure.

Abstract

Purpose

The aim of this article is to obtain a stable tensegrity structure by using the minimum knowledge of the structure.

Design/methodology/approach

Three methods have been formulated based on the eigen value decomposition (EVD) and singular value decomposition theorems. These two theorems are being implemented on the matrices, which are computed from the minimal data of the structure. The required minimum data for the structure is the dimension of the structure, the connectivity matrix of the structure and the initial force density matrix computed from the type of elements. The stability of the structure is analyzed based on the rank deficiency of the force density matrix and equilibrium matrix.

Findings

The main purpose of this article is to use the defined methods to find (1) the nodal coordinates of the structure, (2) the final force density values of the structure, (3) single self-stress from multiple self-stresses and (4) the stable structure.

Originality/value

By using the defined approaches, one can understand the difference of each method, which includes, (1) the selection of eigenvalues, (2) the selection of nodal coordinates from the first decomposition theorem, (3) the selection of mechanism mode and force density values further and (4) the solution of single feasible self-stress from multiple self-stresses.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 October 2022

Fatimah A.M. Al-Zahrani

This paper aims to prepare a new donor–π–acceptor (D–π–A) and acceptor–π– D–π–A (A–π–D–π–A) phenothiazine (PTZ) in conjugation with vinyl isophorone (PTZ-1 and PTZ-2) were…

Abstract

Purpose

This paper aims to prepare a new donor–π–acceptor (D–π–A) and acceptor–π– D–π–A (A–π–D–π–A) phenothiazine (PTZ) in conjugation with vinyl isophorone (PTZ-1 and PTZ-2) were designed and their molecular shape, electrical structures and characteristics have been explored using the density functional theory (DFT). The results satisfactorily explain that the higher conjugative effect resulted in a smaller high occupied molecular orbital–lowest unoccupied molecular orbital gap (Eg). Both compounds show intramolecular charge transfer (ICT) transitions in the ultraviolet (UV)–visible range, with a bathochromic shift and higher absorption oscillator strength, as determined by DFT calculations.

Design/methodology/approach

The produced PTZ-1 and PTZ-2 sensors were characterized using various spectroscopic methods, including Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy (1H/13CNMR). UV–visible absorbance spectra of the generated D–π–A PTZ-1 and A–π–D–π–A PTZ-2 dyes were explored in different solvents of changeable polarities to illustrate positive solvatochromism correlated to intramolecular charge transfer.

Findings

The emission spectra of PTZ-1 and PTZ-2 showed strong solvent-dependent band intensity and wavelength. Stokes shifts were monitored to increase with the increase of the solvent polarity up to 4122 cm−1 for the most polar solvent. Linear energy-solvation relationship was applied to inspect solvent-dependent Stokes shifting. Quantum yield (ф) of PTZ-1 and PTZ-2 was also explored. The maximum UV–visible absorbance wavelengths were detected at 417 and 419 nm, whereas the fluorescence intensity was monitored at 586 and 588 nm.

Originality/value

The PTZ-1 and PTZ-2 dyes leading to colorimetric and emission spectral changes together with a color shift from yellow to red.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 April 2023

Monica Trezise and Michael J. Richardson

As Australians experience more fierce and frequent natural disasters, there are urgent calls for businesses to meaningfully respond to climate change. Australian financial and…

Abstract

Purpose

As Australians experience more fierce and frequent natural disasters, there are urgent calls for businesses to meaningfully respond to climate change. Australian financial and professional services employees occupy an ambiguous space as climate mitigation measures have different economic implications for their clients. The purpose of this paper is to investigate how Australian professionals experience climate change and respond to the issue within their workplace.

Design/methodology/approach

This mixed methods study applies a systems thinking framework to investigate: how do professionals’ experiences of the issue of climate change and the workplace influence their cognitions, emotions and behaviour? And in particular, what psychosocial antecedents precede voicing climate concern?

Findings

Firstly, a survey of professionals (N = 206) found social norms, perceived behavioural control and biospheric values, but not attitudes, significantly predicted prohibitive green voice. Middle managers were significantly likely to voice climate concern, whereas senior managers were significantly likely to express climate scepticism. Ten professionals were then interviewed to gain a contextualised understanding of these trends. Interpretive phenomenological analysis identified five interrelated themes: (1) active identity management, (2) understanding climate change is escalating, (3) workplace shapes climate change response, (4) frustration and alienation and (5) belief that corporations prioritise profit.

Originality/value

Findings are discussed in relation to how employees may both embody and adapt their organisations. These results have implications for understandings of workplace meaningfulness and organisational risk governance.

Details

International Journal of Ethics and Systems, vol. 40 no. 2
Type: Research Article
ISSN: 2514-9369

Keywords

Open Access
Article
Publication date: 28 June 2022

Yahya Alnashri and Hasan Alzubaidi

The main purpose of this paper is to introduce the gradient discretisation method (GDM) to a system of reaction diffusion equations subject to non-homogeneous Dirichlet boundary…

Abstract

Purpose

The main purpose of this paper is to introduce the gradient discretisation method (GDM) to a system of reaction diffusion equations subject to non-homogeneous Dirichlet boundary conditions. Then, the authors show that the GDM provides a comprehensive convergence analysis of several numerical methods for the considered model. The convergence is established without non-physical regularity assumptions on the solutions.

Design/methodology/approach

In this paper, the authors use the GDM to discretise a system of reaction diffusion equations with non-homogeneous Dirichlet boundary conditions.

Findings

The authors provide a generic convergence analysis of a system of reaction diffusion equations. The authors introduce a specific example of numerical scheme that fits in the gradient discretisation method. The authors conduct a numerical test to measure the efficiency of the proposed method.

Originality/value

This work provides a unified convergence analysis of several numerical methods for a system of reaction diffusion equations. The generic convergence is proved under the classical assumptions on the solutions.

Access

Year

Last 6 months (5)

Content type

1 – 5 of 5