Search results

1 – 10 of over 1000
Article
Publication date: 8 February 2021

Ouadie Koubaiti, Said EL Fakkoussi, Jaouad El-Mekkaoui, Hassan Moustachir, Ahmed Elkhalfi and Catalin I. Pruncu

This paper aims to propose a new boundary condition and a web-spline basis of finite element space approximation to remedy the problems of constraints due to homogeneous and…

Abstract

Purpose

This paper aims to propose a new boundary condition and a web-spline basis of finite element space approximation to remedy the problems of constraints due to homogeneous and non-homogeneous; Dirichlet boundary conditions. This paper considered the two-dimensional linear elasticity equation of Navier–Lamé with the condition CAB. The latter allows to have a total insertion of the essential boundary condition in the linear system obtained; without using a numerical method as Lagrange multiplier. This study have developed mixed finite element; method using the B-splines Web-spline space. These provide an exact implementation of the homogeneous; Dirichlet boundary conditions, which removes the constraints caused by the standard; conditions. This paper showed the existence and the uniqueness of the weak solution, as well as the convergence of the numerical solution for the quadratic case are proved. The weighted extended B-spline; approach have become a much more workmanlike solution.

Design/methodology/approach

In this paper, this study used the implementation of weighted finite element methods to solve the Navier–Lamé system with a new boundary condition CA, B (Koubaiti et al., 2020), that generalises the well-known basis, especially the Dirichlet and the Neumann conditions. The novel proposed boundary condition permits to use a single Matlab code, which summarises all kind of boundary conditions encountered in the system. By using this model is possible to save time and programming recourses while reap several programs in a single directory.

Findings

The results have shown that the Web-spline-based quadratic-linear finite elements satisfy the inf–sup condition, which is necessary for existence and uniqueness of the solution. It was demonstrated by the existence of the discrete solution. A full convergence was established using the numerical solution for the quadratic case. Due to limited regularity of the Navier–Lamé problem, it will not change by increasing the degree of the Web-spline. The computed relative errors and their rates indicate that they are of order 1/H. Thus, it was provided their theoretical validity for the numerical solution stability. The advantage of this problem that uses the CA, B boundary condition is associated to reduce Matlab programming complexity.

Originality/value

The mixed finite element method is a robust technique to solve difficult challenges from engineering and physical sciences using the partial differential equations. Some of the important applications include structural mechanics, fluid flow, thermodynamics and electromagnetic fields (Zienkiewicz and Taylor, 2000) that are mainly based on the approximation of Lagrange. However, this type of approximation has experienced a great restriction in the level of domain modelling, especially in the case of complicated boundaries such as that in the form of curvilinear graphs. Recently, the research community tried to develop a new way of approximation based on the so-called B-spline that seems to have superior results in solving the engineering problems.

Details

Engineering Computations, vol. 38 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 March 2018

Jun-Hyeok Lee, Seung-Jae Lee and Jung-chun Suh

As the penalized vortex-in-cell (pVIC) method is based on the vorticity-velocity form of the Navier–Stokes equation, the pressure variable is not incorporated in its solution…

Abstract

Purpose

As the penalized vortex-in-cell (pVIC) method is based on the vorticity-velocity form of the Navier–Stokes equation, the pressure variable is not incorporated in its solution procedure. This is one of the advantages of vorticity-based methods such as pVIC. However, dynamic pressure is an essential flow property in engineering problems. In pVIC, the pressure field can be explicitly evaluated by a pressure Poisson equation (PPE) from the velocity and vorticity solutions. How to specify far-field boundary conditions is then an important numerical issue. Therefore, this paper aims to robustly and accurately determine the boundary conditions for solving the PPE.

Design/methodology/approach

This paper introduces a novel non-iterative method for specifying Dirichlet far-field boundary conditions to solve the PPE in a bounded domain. The pressure field is computed using the velocity and vorticity fields obtained from pVIC, and the solid boundary conditions for pressure are also imposed by a penalization term within the framework of pVIC. The basic idea of our approach is that the pressure at any position can be evaluated from its gradient field in a closed contour because the contour integration for conservative vector fields is path-independent. The proposed approach is validated and assessed by a comparative study.

Findings

This non-iterative method is successfully implemented to the pressure calculation of the benchmark problems in both 2D and 3D. The method is much faster than all the other methods tested without compromising accuracy and enables one to obtain reasonable pressure field even for small computation domains that are used regardless of a source distribution (the right-hand side in the Poisson equation).

Originality/value

The strategy introduced in this paper provides an effective means of specifying Dirichlet boundary conditions at the exterior domain boundaries for the pressure Poisson problems. It is very efficient and robust compared with the conventional methods. The proposed idea can also be adopted in other fields dealing with infinite-domain Poisson problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 October 2021

Frédérique Le Louër and María-Luisa Rapún

The purpose of this paper is to revisit the recursive computation of closed-form expressions for the topological derivative of shape functionals in the context of time-harmonic…

Abstract

Purpose

The purpose of this paper is to revisit the recursive computation of closed-form expressions for the topological derivative of shape functionals in the context of time-harmonic acoustic waves scattering by sound-soft (Dirichlet condition), sound-hard (Neumann condition) and isotropic inclusions (transmission conditions).

Design/methodology/approach

The elliptic boundary value problems in the singularly perturbed domains are equivalently reduced to couples of boundary integral equations with unknown densities given by boundary traces. In the case of circular or spherical holes, the spectral Fourier and Mie series expansions of the potential operators are used to derive the first-order term in the asymptotic expansion of the boundary traces for the solution to the two- and three-dimensional perturbed problems.

Findings

As the shape gradients of shape functionals are expressed in terms of boundary integrals involving the boundary traces of the state and the associated adjoint field, then the topological gradient formulae follow readily.

Originality/value

The authors exhibit singular perturbation asymptotics that can be reused in the derivation of the topological gradient function in the iterated numerical solution of any shape optimization or imaging problem relying on time-harmonic acoustic waves propagation. When coupled with converging Gauss−Newton iterations for the search of optimal boundary parametrizations, it generates fully automatic algorithms.

Details

Engineering Computations, vol. 39 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 May 2017

Mohammad Malekan, Felício Barros, Roque Luiz da Silva Pitangueira, Phillipe Daniel Alves and Samuel Silva Penna

This paper aims to present a computational framework to generate numeric enrichment functions for two-dimensional problems dealing with single/multiple local phenomenon/phenomena…

Abstract

Purpose

This paper aims to present a computational framework to generate numeric enrichment functions for two-dimensional problems dealing with single/multiple local phenomenon/phenomena. The two-scale generalized/extended finite element method (G/XFEM) approach used here is based on the solution decomposition, having global- and local-scale components. This strategy allows the use of a coarse mesh even when the problem produces complex local phenomena. For this purpose, local problems can be defined where these local phenomena are observed and are solved separately by using fine meshes. The results of the local problems are used to enrich the global one improving the approximate solution.

Design/methodology/approach

The implementation of the two-scale G/XFEM formulation follows the object-oriented approach presented by the authors in a previous work, where it is possible to combine different kinds of elements and analyses models with the partition of unity enrichment scheme. Beside the extension of the G/XFEM implementation to enclose the global–local strategy, the imposition of different boundary conditions is also generalized.

Findings

The generalization done for boundary conditions is very important, as the global–local approach relies on the boundary information transferring process between the two scales of the analysis. The flexibility for the numerical analysis of the proposed framework is illustrated by several examples. Different analysis models, element formulations and enrichment functions are used, and the accuracy, robustness and computational efficiency are demonstrated.

Originality/value

This work shows a generalize imposition of different boundary conditions for global–local G/XFEM analysis through an object-oriented implementation. This generalization is very important, as the global–local approach relies on the boundary information transferring process between the two scales of the analysis. Also, solving multiple local problems simultaneously and solving plate problems using global–local G/XFEM are other contributions of this work.

Details

Engineering Computations, vol. 34 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 August 2021

Frédérique Le Louër and María-Luisa Rapún

In this paper, the authors revisit the computation of closed-form expressions of the topological indicator function for a one step imaging algorithm of two- and three-dimensional…

Abstract

Purpose

In this paper, the authors revisit the computation of closed-form expressions of the topological indicator function for a one step imaging algorithm of two- and three-dimensional sound-soft (Dirichlet condition), sound-hard (Neumann condition) and isotropic inclusions (transmission conditions) in the free space.

Design/methodology/approach

From the addition theorem for translated harmonics, explicit expressions of the scattered waves by infinitesimal circular (and spherical) holes subject to an incident plane wave or a compactly supported distribution of point sources are available. Then the authors derive the first-order term in the asymptotic expansion of the Dirichlet and Neumann traces and their surface derivatives on the boundary of the singular medium perturbation.

Findings

As the shape gradient of shape functionals are expressed in terms of boundary integrals involving the boundary traces of the state and the associated adjoint field, then the topological gradient formulae follow readily.

Originality/value

The authors exhibit singular perturbation asymptotics that can be reused in the derivation of the topological gradient function that generates initial guesses in the iterated numerical solution of any shape optimization problem or imaging problems relying on time-harmonic acoustic wave propagation.

Details

Engineering Computations, vol. 39 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 January 2013

C. Shu, W.W. Ren and W.M. Yang

The purpose of this paper is to present two efficient immersed boundary methods (IBM) for simulation of thermal flow problems. One method is for given temperature condition

Abstract

Purpose

The purpose of this paper is to present two efficient immersed boundary methods (IBM) for simulation of thermal flow problems. One method is for given temperature condition (Dirichlet type), while the other is for given heat flux condition (Neumann type). The methods are applied to simulate natural and mixed convection problems to check their performance. The comparison of present results with available data in the literature shows that the present methods can obtain accurate numerical results efficiently.

Design/methodology/approach

The paper presents two efficient IBM solvers, in which the effect of thermal boundary to its surrounding fluid is considered through the introduction of a heat source/sink term into the energy equation. One is the temperature correction‐based IBM developed for problems with given temperature on the wall. The other is heat flux correction‐based IBM for problems with given heat flux on the wall. Note that in this solver, the offset of derivative condition is directly used to correct the temperature field.

Findings

As compared with existing solvers, the temperature correction‐based IBM determines the heat source/sink implicitly instead of pre‐calculated explicitly, so that the boundary condition for temperature is accurately satisfied. To the best of the authors' knowledge, the work of heat flux correction‐based IBM is the first endeavour for application of IBM to solve thermal flow problems with Neumann (heat flux) boundary condition. It was found that both methods presented in this work can efficiently obtain accurate numerical results for thermal flow problems.

Originality/value

The two methods presented in this paper are novel. They can effectively solve thermal flow problems with Dirichlet and Neumann boundary conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1129

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 July 2006

Daniel Ioan, Gabriela Ciuprina and Marius Radulescu

The paper has the purpose of proposing a new open boundary condition to be used in conjunction with the finite integration technique (FIT) for the modelling of passive on‐chip…

Abstract

Purpose

The paper has the purpose of proposing a new open boundary condition to be used in conjunction with the finite integration technique (FIT) for the modelling of passive on‐chip components.

Design/methodology/approach

This boundary condition is ensured by using a virtual layer that surrounds the computational domain.

Findings

The paper proves which are the optimal material properties of the equivalent layer of open boundary.

Practical implications

When modelling passive on‐chip components with FIT, the method proposed is more efficient than the strategic dual image technique.

Originality/value

The paper shows the advantage of this approach – that the analysis algorithm remains unchanged, while saving the field‐circuit compatibility properties, such as current conservation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 August 2017

Ram Jiwari and Ali Saleh Alshomrani

The main aim of the paper is to develop a new B-splines collocation algorithm based on modified cubic trigonometric B-spline functions to find approximate solutions of nonlinear…

Abstract

Purpose

The main aim of the paper is to develop a new B-splines collocation algorithm based on modified cubic trigonometric B-spline functions to find approximate solutions of nonlinear parabolic Burgers’-type equations with Dirichlet boundary conditions.

Design/methodology/approach

A modification is made in cubic trigonometric B-spline functions to handle the Dirichlet boundary conditions and an algorithm is developed with the help of modified cubic trigonometric B-spline functions. The proposed algorithm reduced the Burgers’ equations into a system of first-order nonlinear ordinary differential equations in time variable. Then, strong stability preserving Runge-Kutta 3rd order (SSP-RK3) scheme is used to solve the obtained system.

Findings

A different technique based on modified cubic trigonometric B-spline functions is proposed which is quite different from to the schemes developed in Abbas et al. (2014) and Nazir et al. (2016), and the developed algorithms are free from linearization process and finite difference operators.

Originality/value

To the best knowledge of the authors, this technique is novel for solving nonlinear partial differential equations, and the new proposed technique gives better results than the results discussed in Ozis et al. (2003), Kutluay et al. (1999), Khater et al. (2008), Korkmaz and Dag (2011), Kutluay et al. (2004), Rashidi et al. (2009), Mittal and Jain (2012), Mittal and Jiwari (2012), Mittal and Tripathi (2014), Xie et al. (2008) and Kadalbajoo et al. (2005).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 June 2017

Ali Saleh Alshomrani, Sapna Pandit, Abdullah K. Alzahrani, Metib Said Alghamdi and Ram Jiwari

The main purpose of this work is the development of a numerical algorithm based on modified cubic trigonometric B-spline functions for computational modelling of hyperbolic-type…

Abstract

Purpose

The main purpose of this work is the development of a numerical algorithm based on modified cubic trigonometric B-spline functions for computational modelling of hyperbolic-type wave equations. These types of equations describe a variety of physical models in the vibrations of structures, nonlinear optics, quantum field theory and solid-state physics, etc.

Design/methodology/approach

Dirichlet boundary conditions cannot be handled easily by cubic trigonometric B-spline functions. Then, a modification is made in cubic trigonometric B-spline functions to handle the Dirichlet boundary conditions and a numerical algorithm is developed. The proposed algorithm reduced the hyperbolic-type wave equations into a system of first-order ordinary differential equations (ODEs) in time variable. Then, stability-preserving SSP-RK54 scheme and the Thomas algorithm are used to solve the obtained system. The stability of the algorithm is also discussed.

Findings

A different technique based on modified cubic trigonometric B-spline functions is proposed which is quite different from the schemes developed (Abbas et al., 2014; Nazir et al., 2016) and depicts the computational modelling of hyperbolic-type wave equations.

Originality/value

To the best of the authors’ knowledge, this technique is novel for solving hyperbolic-type wave equations and the developed algorithm is free from quasi-linearization process and finite difference operators for time derivatives. This algorithm gives better results than the results discussed in literature (Dehghan and Shokri, 2008; Batiha et al., 2007; Mittal and Bhatia, 2013; Jiwari, 2015).

1 – 10 of over 1000