Search results

1 – 10 of 32
Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 30 April 2024

Lina Jia and MingYong Pang

The purpose of this paper is to propose a new grey prediction model, GOFHGM (1,1), which combines generalised fractal derivative and particle swarm optimisation algorithms. The…

Abstract

Purpose

The purpose of this paper is to propose a new grey prediction model, GOFHGM (1,1), which combines generalised fractal derivative and particle swarm optimisation algorithms. The aim is to address the limitations of traditional grey prediction models in order selection and improve prediction accuracy.

Design/methodology/approach

The paper introduces the concept of generalised fractal derivative and applies it to the order optimisation of grey prediction models. The particle swarm optimisation algorithm is also adopted to find the optimal combination of orders. Three cases are empirically studied to compare the performance of GOFHGM(1,1) with traditional grey prediction models.

Findings

The study finds that the GOFHGM(1,1) model outperforms traditional grey prediction models in terms of prediction accuracy. Evaluation indexes such as mean squared error (MSE) and mean absolute error (MAE) are used to evaluate the model.

Research limitations/implications

The research study may have limitations in terms of the scope and generalisability of the findings. Further research is needed to explore the applicability of GOFHGM(1,1) in different fields and to improve the model’s performance.

Originality/value

The study contributes to the field by introducing a new grey prediction model that combines generalised fractal derivative and particle swarm optimisation algorithms. This integration enhances the accuracy and reliability of grey predictions and strengthens their applicability in various predictive applications.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 4 April 2024

Yongjing Wang and Yingwei Liu

The purpose of this paper is to extract electrochemical reaction kinetics parameters, such as Tafel slope, exchange current density and equilibrium potential, which cannot be…

Abstract

Purpose

The purpose of this paper is to extract electrochemical reaction kinetics parameters, such as Tafel slope, exchange current density and equilibrium potential, which cannot be directly measured, this study aims to propose an improved particle swarm optimization (PSO) algorithm.

Design/methodology/approach

In traditional PSO algorithms, each particle’s historical optimal solution is compared with the global optimal solution in each iteration step, and the optimal solution is replaced with a certain probability to achieve the goal of jumping out of the local optimum. However, this will to some extent undermine the (true) optimal solution. In view of this, this study has improved the traditional algorithm: at each iteration of each particle, the historical optimal solution is not compared with the global optimal solution. Instead, after all particles have iterated, the optimal solution is selected and compared with the global optimal solution and then the optimal solution is replaced with a certain probability. This to some extent protects the global optimal solution.

Findings

The polarization curve plotted by this equation is in good agreement with the experimental values, which demonstrates the reliability of this algorithm and provides a new method for measuring electrochemical parameters.

Originality/value

This study has improved the traditional method, which has high accuracy and can provide great support for corrosion research.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 March 2024

Amar Benkhaled, Amina Benkhedda, Braham Benaouda Zouaoui and Soheyb Ribouh

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However…

Abstract

Purpose

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However, the existing methods for fuel reduction often rely on complex experimental calculations and data extraction from embedded systems, making practical implementation challenging. To address this, this study aims to devise a simple and accessible approach using available information.

Design/methodology/approach

In this paper, a novel analytic method to estimate and optimize fuel consumption for aircraft equipped with jet engines is proposed, with a particular emphasis on speed and altitude parameters. The dynamic variations in weight caused by fuel consumption during flight are also accounted for. The derived fuel consumption equation was rigorously validated by applying it to the Boeing 737–700 and comparing the results against the fuel consumption reference tables provided in the Boeing manual. Remarkably, the equation yielded closely aligned outcomes across various altitudes studied. In the second part of this paper, a pioneering approach is introduced by leveraging the particle swarm optimization algorithm (PSO). This novel application of PSO allows us to explore the equation’s potential in finding the optimal altitude and speed for an actual flight from Algiers to Brussels.

Findings

The results demonstrate that using the main findings of this study, including the innovative equation and the application of PSO, significantly simplifies and expedites the process of determining the ideal parameters, showcasing the practical applicability of the approach.

Research limitations/implications

The suggested methodology stands out for its simplicity and practicality, particularly when compared to alternative approaches, owing to the ready availability of data for utilization. Nevertheless, its applicability is limited in scenarios where zero wind effects are a prevailing factor.

Originality/value

The research opens up new possibilities for fuel-efficient aviation, with a particular focus on the development of a unique fuel consumption equation and the pioneering use of the PSO algorithm for optimizing flight parameters. This study’s accessible approach can pave the way for more environmentally conscious and economical flight operations.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 April 2024

Yiwei Zhang, Daochun Li, Zi Kan, Zhuoer Yao and Jinwu Xiang

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work…

Abstract

Purpose

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.

Design/methodology/approach

A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.

Findings

The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.

Originality/value

The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 April 2024

Xu Yang, Xin Yue, Zhenhua Cai and Shengshi Zhong

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Abstract

Purpose

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Design/methodology/approach

The complex workpiece surfaces in the project are first divided by triangular meshing. Then, the geodesic curve method is applied for local path planning. Finally, the subsurface trajectory combination optimization problem is modeled as a GTSP problem and solved by the ant colony algorithm, where the evaluation scores and the uniform design method are used to determine the optimal parameter combination of the algorithm. A global optimized spraying trajectory is thus obtained.

Findings

The simulation results show that the proposed processes can achieve the shortest global spraying trajectory. Moreover, the cold spraying experiment on the IRB4600 six-joint robot verifies that the spraying trajectory obtained by the processes can ensure a uniform coating thickness.

Originality/value

The proposed processes address the issue of different parameter combinations, leading to different results when using the ant colony algorithm. The two methods for obtaining the optimal parameter combinations can solve this problem quickly and effectively, and guarantee that the processes obtain the optimal global spraying trajectory.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 30 April 2024

Niharika Varshney, Srikant Gupta and Aquil Ahmed

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing…

Abstract

Purpose

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing on the optimization of integrated production and transportation processes. The primary purpose is to enhance decision-making in supply chain management by formulating a robust multi-objective model.

Design/methodology/approach

In dealing with uncertainty, this study uses Pythagorean fuzzy numbers (PFNs) to effectively represent and quantify uncertainties associated with various parameters within the CLSC network. The proposed model is solved using Pythagorean hesitant fuzzy programming, presenting a comprehensive and innovative methodology designed explicitly for handling uncertainties inherent in CLSC contexts.

Findings

The research findings highlight the effectiveness and reliability of the proposed framework for addressing uncertainties within CLSC networks. Through a comparative analysis with other established approaches, the model demonstrates its robustness, showcasing its potential to make informed and resilient decisions in supply chain management.

Research limitations/implications

This study successfully addressed uncertainty in CLSC networks, providing logistics managers with a robust decision-making framework. Emphasizing the importance of PFNs and Pythagorean hesitant fuzzy programming, the research offered practical insights for optimizing transportation routes and resource allocation. Future research could explore dynamic factors in CLSCs, integrate real-time data and leverage emerging technologies for more agile and sustainable supply chain management.

Originality/value

This research contributes significantly to the field by introducing a novel and comprehensive methodology for managing uncertainty in CLSC networks. The adoption of PFNs and Pythagorean hesitant fuzzy programming offers an original and valuable approach to addressing uncertainties, providing practitioners and decision-makers with insights to make informed and resilient decisions in supply chain management.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 21 November 2023

Pham Duc Tai, Krit Jinawat and Jirachai Buddhakulsomsiri

Distribution network design involves a set of strategic decisions in supply chains because of their long-term impacts on the total logistics cost and environment. To incorporate a…

Abstract

Purpose

Distribution network design involves a set of strategic decisions in supply chains because of their long-term impacts on the total logistics cost and environment. To incorporate a trade-off between financial and environmental aspects of these decisions, this paper aims to determine an optimal location, among candidate locations, of a new logistics center, its capacity, as well as optimal network flows for an existing distribution network, while concurrently minimizing the total logistics cost and gas emission. In addition, uncertainty in transportation and warehousing costs are considered.

Design/methodology/approach

The problem is formulated as a fuzzy multiobjective mathematical model. The effectiveness of this model is demonstrated using an industrial case study. The problem instance is a four-echelon distribution network with 22 products and a planning horizon of 20 periods. The model is solved by using the min–max and augmented ε-constraint methods with CPLEX as the solver. In addition to illustrating model’s applicability, the effect of choosing a new warehouse in the model is investigated through a scenario analysis.

Findings

For the applicability of the model, the results indicate that the augmented ε-constraint approach provides a set of Pareto solutions, which represents the ideal trade-off between the total logistics cost and gas emission. Through a case study problem instance, the augmented ε-constraint approach is recommended for similar network design problems. From a scenario analysis, when the operational cost of the new warehouse is within a specific fraction of the warehousing cost of third-party warehouses, the solution with the new warehouse outperforms that without the new warehouse with respective to financial and environmental objectives.

Originality/value

The proposed model is an effective decision support tool for management, who would like to assess the impact of network planning decisions on the performance of their supply chains with respect to both financial and environmental aspects under uncertainty.

Article
Publication date: 13 March 2024

Ziyuan Ma, Huajun Gong and Xinhua Wang

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for…

Abstract

Purpose

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for multiple unmanned aerial vehicles (UAVs) during actuator failures and external perturbations.

Design/methodology/approach

First, this study developed the formation tracking protocol for each follower using UAV formation members, defining the tracking inaccuracy of the UAV followers’ location. Subsequently, this study designed the multilayer event-triggered controller based on the backstepping method framework within finite time. Then, considering the actuator failures, and added self-adaptive thought for fault-tolerant control within finite time, the event-triggered closed-loop system is subsequently shown to be a finite-time stable system. Furthermore, the Zeno behavior is analyzed to prevent infinite triggering instances within a finite time. Finally, simulations are conducted with external disturbances and actuator failure conditions to demonstrate formation tracking controller performance.

Findings

It achieves improved performance in the presence of external disturbances and system failures. Combining limited-time adaptive control and event triggering improves system stability, increase robustness to disturbances and calculation efficiency. In addition, the designed formation tracking controller can effectively control the time-varying formation of the leader and followers to complete the task, and by adding a fixed-time observer, it can effectively compensate for external disturbances and improve formation control accuracy.

Originality/value

A formation-following controller is designed, which can handle both external disturbances and internal actuator failures during formation flight, and the proposed method can be applied to a variety of formation control scenarios and does not rely on a specific type of UAV or communication network.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 March 2022

Elavaar Kuzhali S. and Pushpa M.K.

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150…

Abstract

Purpose

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The COVID-19 diagnosis is required to detect at the beginning stage and special attention should be given to them. The fastest way to detect the COVID-19 infected patients is detecting through radiology and radiography images. The few early studies describe the particular abnormalities of the infected patients in the chest radiograms. Even though some of the challenges occur in concluding the viral infection traces in X-ray images, the convolutional neural network (CNN) can determine the patterns of data between the normal and infected X-rays that increase the detection rate. Therefore, the researchers are focusing on developing a deep learning-based detection model.

Design/methodology/approach

The main intention of this proposal is to develop the enhanced lung segmentation and classification of diagnosing the COVID-19. The main processes of the proposed model are image pre-processing, lung segmentation and deep classification. Initially, the image enhancement is performed by contrast enhancement and filtering approaches. Once the image is pre-processed, the optimal lung segmentation is done by the adaptive fuzzy-based region growing (AFRG) technique, in which the constant function for fusion is optimized by the modified deer hunting optimization algorithm (M-DHOA). Further, a well-performing deep learning algorithm termed adaptive CNN (A-CNN) is adopted for performing the classification, in which the hidden neurons are tuned by the proposed DHOA to enhance the detection accuracy. The simulation results illustrate that the proposed model has more possibilities to increase the COVID-19 testing methods on the publicly available data sets.

Findings

From the experimental analysis, the accuracy of the proposed M-DHOA–CNN was 5.84%, 5.23%, 6.25% and 8.33% superior to recurrent neural network, neural networks, support vector machine and K-nearest neighbor, respectively. Thus, the segmentation and classification performance of the developed COVID-19 diagnosis by AFRG and A-CNN has outperformed the existing techniques.

Originality/value

This paper adopts the latest optimization algorithm called M-DHOA to improve the performance of lung segmentation and classification in COVID-19 diagnosis using adaptive K-means with region growing fusion and A-CNN. To the best of the authors’ knowledge, this is the first work that uses M-DHOA for improved segmentation and classification steps for increasing the convergence rate of diagnosis.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 32