Search results

1 – 10 of 25
Open Access
Article
Publication date: 15 November 2022

Zhiqiang Zhang, Xingyu Zhu and Ronghua Wei

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and

Abstract

Purpose

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and misalignment. There is no developed system of fortification and related codes to follow. There are scientific problems and technical challenges in this field that have never been encountered in past research and practices.

Design/methodology/approach

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation based on the open-cut tunnel project of the Urumqi Rail Transit Line 2, which passes through the Jiujiawan normal fault. The test simulated the subway tunnel passing through the normal fault, which is inclined at 60°. This research compared and analyzed the differences in mechanical behavior between two types of lining section: the open-cut double-line box tunnel and the modified double-line box arch tunnel. The structural response and failure characteristics of the open-cut segmented lining of the tunnel under the stick-slip part of the normal fault were studied.

Findings

The results indicated that the double-line box arch tunnel improved the shear and longitudinal bending performance. Longitudinal cracks were mainly distributed in the baseplate, wall foot and arch foot, and the crack position was basically consistent with the longitudinal distribution of surrounding rock pressure. This indicated that the longitudinal cracks were due to the large local load of the cross-section of the structure, leading to an excessive local bending moment of the structure, which resulted in large eccentric failure of the lining and formation of longitudinal cracks. Compared with the ordinary box section tunnel, the improved double-line box arch tunnel significantly reduced the destroyed and damage areas of the hanging wall and footwall. The damage area and crack length were reduced by 39 and 59.3%, respectively. This indicates that the improved double-line box arch tunnel had good anti-sliding performance.

Originality/value

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation. This system increased the similarity ratio of the test model, improved the dislocation loading rate and optimized the simulation scheme of the segmented flexible lining and other key factors affecting the test. It is of great scientific significance and engineering value to investigate the structure of subway tunnels under active fault misalignment, to study its force characteristics and damage modes, and to provide a technical reserve for the design and construction of subway tunnels through active faults.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Content available
Article
Publication date: 2 August 2021

Modupeola Dada, Patricia Popoola and Ntombi Mathe

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential…

1692

Abstract

Purpose

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential alternatives to nickel superalloys for gas turbine applications. Understandings of the laser surface modification techniques of the HEA are discussed whilst future recommendations and remedies to manufacturing challenges via laser are outlined.

Design/methodology/approach

Materials used for high-pressure gas turbine engine applications must be able to withstand severe environmentally induced degradation, mechanical, thermal loads and general extreme conditions caused by hot corrosive gases, high-temperature oxidation and stress. Over the years, Nickel-based superalloys with elevated temperature rupture and creep resistance, excellent lifetime expectancy and solution strengthening L12 and γ´ precipitate used for turbine engine applications. However, the superalloy’s density, low creep strength, poor thermal conductivity, difficulty in machining and low fatigue resistance demands the innovation of new advanced materials.

Findings

HEAs is one of the most frequently investigated advanced materials, attributed to their configurational complexity and properties reported to exceed conventional materials. Thus, owing to their characteristic feature of the high entropy effect, several other materials have emerged to become potential solutions for several functional and structural applications in the aerospace industry. In a previous study, research contributions show that defects are associated with conventional manufacturing processes of HEAs; therefore, this study investigates new advances in the laser-based manufacturing and surface modification techniques of HEA.

Research limitations/implications

The AlxCoCrCuFeNi HEA system, particularly the Al0.5CoCrCuFeNi HEA has been extensively studied, attributed to its mechanical and physical properties exceeding that of pure metals for aerospace turbine engine applications and the advances in the fabrication and surface modification processes of the alloy was outlined to show the latest developments focusing only on laser-based manufacturing processing due to its many advantages.

Originality/value

It is evident that high entropy materials are a potential innovative alternative to conventional superalloys for turbine engine applications via laser additive manufacturing.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

1393

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 8 August 2018

Liliana Rybarska-Rusinek, Ewa Rejwer and Alexander Linkov

At present numerical simulation of seismicity, used in mining and hydraulic fracturing practice, is quite time expensive what hampers its combined employing with observed…

Abstract

Purpose

At present numerical simulation of seismicity, used in mining and hydraulic fracturing practice, is quite time expensive what hampers its combined employing with observed seismicity in real time. The purpose of this paper is to suggest a mean for drastic speeding up numerical modeling seismic and aseismic events.

Design/methodology/approach

The authors propose the means to radically decrease the time expense for the bottleneck stage of simulation: calculations of stresses, induced by a large group of already activated flaws (sources of events), at locations of flaws of another large group, which may be activated by the stresses. This is achieved by building a hierarchical tree and properly accounting for the sizes of activated flaws, excluding check of their influence on flaws, which are beyond strictly defined near-regions of strong interaction.

Findings

Comparative simulations of seismicity by conventional and improved methods demonstrate high efficiency of the means developed. When applied to practical mining and hydrofracturing problems, it requires some two orders less time to obtain practically the same output results as those of conventional methods.

Originality/value

The proposed improvement provides a means for simulation of seismicity in real time of mining steps and hydrofracture propagation. It can be also used in other applications involving seismic and aseismic events and acoustic emission.

Details

Engineering Computations, vol. 35 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 7 May 2024

Mohammed Y. Fattah, Mahmood R. Mahmood and Mohammed F. Aswad

The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry…

Abstract

Purpose

The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to explore the effect of load amplitude, load frequency, presence of geogrid layer in ballast layer and ballast layer thickness on the behavior of track system. These variables are studied both experimentally and numerically. This paper examines the effect of geogrid reinforced ballast laying on a layer of clayey soil as a subgrade layer, where a half full scale railway tests are conducted as well as a theoretical analysis is performed.

Design/methodology/approach

The experimental tests work consists of laboratory model tests to investigate the reduction in the compressibility and stress distribution induced in soft clay under a ballast railway reinforced by geogrid reinforcement subjected to dynamic load. Experimental model based on an approximate half scale for general rail track engineering practice is adopted in this study which is used in Iraqi railways. The investigated parameters are load amplitude, load frequency and presence of geogrid reinforcement layer. A half full-scale railway was constructed for carrying out the tests, which consists of two rails 800 mm in length with three wooden sleepers (900 mm × 90 mm × 90 mm). The ballast was overlying 500 mm thick clay layer. The tests were carried out with and without geogrid reinforcement, the tests were carried out in a well tied steel box of 1.5 m length × 1 m width × 1 m height. A series of laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, was measured in reinforced and unreinforced ballast cases. In addition to the laboratory tests, the application of numerical analysis was made by using the finite element program PLAXIS 3D 2013.

Findings

It was concluded that the settlement increased with increasing the simulated train load amplitude, there is a sharp increase in settlement up to the cycle 500 and after that, there is a gradual increase to level out between, 2,500 and 4,500 cycles depending on the load frequency. There is a little increase in the induced settlement when the load amplitude increased from 0.5 to 1 ton, but it is higher when the load amplitude increased to 2 ton, the increase in settlement depends on the geogrid existence and the other studied parameters. Both experimental and numerical results showed the same behavior. The effect of load frequency on the settlement ratio is almost constant after 500 cycles. In general, for reinforced cases, the effect of load frequency on the settlement ratio is very small ranging between 0.5 and 2% compared with the unreinforced case.

Originality/value

Increasing the ballast layer thickness from 20 cm to 30 cm leads to decrease the settlement by about 50%. This ascertains the efficiency of ballast in spreading the waves induced by the track.

Details

Railway Sciences, vol. 3 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 2 February 2023

Chiara Bertolin and Elena Sesana

The overall objective of this study is envisaged to provide decision makers with actionable insights and access to multi-risk maps for the most in-danger stave churches (SCs…

1414

Abstract

Purpose

The overall objective of this study is envisaged to provide decision makers with actionable insights and access to multi-risk maps for the most in-danger stave churches (SCs) among the existing 28 churches at high spatial resolution to better understand, reduce and mitigate single- and multi-risk. In addition, the present contribution aims to provide decision makers with some information to face the exacerbation of the risk caused by the expected climate change.

Design/methodology/approach

Material and data collection started with the consultation of the available literature related to: (1) SCs' conservation status, (2) available methodologies suitable in multi-hazard approach and (3) vulnerability leading indicators to consider when dealing with the impact of natural hazards specifically on immovable cultural heritage.

Findings

The paper contributes to a better understanding of place-based vulnerability with local mapping dimension also considering future threats posed by climate change. The results highlight the danger at which the SCs of Røldal, in case of floods, and of Ringebu, Torpo and Øye, in case of landslide, may face and stress the urgency of increasing awareness and preparedness on these potential hazards.

Originality/value

The contribution for the first time aims to homogeneously collect and report all together existing spread information on architectural features, conservation status and geographical attributes for the whole group of SCs by accompanying this information with as much as possible complete 2D sections collection from existing drawings and novel 3D drawn sketches created for this contribution. Then the paper contributes to a better understanding of place-based vulnerability with local mapping dimension also considering future threats posed by climate change. Then it highlights the danger of floods and landslides at which the 28 SCs are subjected. Finally it reports how these risks will change under the ongoing impact of climate change.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 23 February 2018

José Guilherme Moreira Simões Vieira, Joana Salgueiro, Amadeu Mortágua Velho da Maia Soares, Ulisses Azeiteiro and Fernando Morgado

The development of models that allows the evaluation and prediction of erosion processes is an important tool for the management and planning of coastal systems. Mangrove forests…

3331

Abstract

Purpose

The development of models that allows the evaluation and prediction of erosion processes is an important tool for the management and planning of coastal systems. Mangrove forests systems are under threat by the impacts of erosion, which is also intensified by human activity (and aggravated in the scenarios of global warming and climate change). The purpose of this paper is to develop a model of geographic information systems (GIS) that can be used for any estuary area, but it can also be used for mangroves.

Design/methodology/approach

This paper uses georeferentiation which is defined as a set of parameters that best characterize the mangrove areas: elevation (m); geomorphology; geology; land cover; anthropogenic activities; distance to the coastline (m) and maximum tidal range (m). Three different methods are used to combine the various vulnerability parameters, namely, DRASTIC index, analytical hierarchy process (AHP) and square root of the geometric mean.

Findings

The three approaches presented in this work show different types evaluating vulnerability to erosion, highlighting a stronger overvaluation of the areas presented with a high vulnerability, through the use of DRASTIC index when compared with two other approaches. The use of the AHP shows similarity to the square root of the geometric mean model, but the AHP also presents a higher percentage of vulnerable areas classified as having medium to very high vulnerability. On the other hand, the use of square root of the geometric mean led to a higher percentage of areas classified as having low and very low vulnerability.

Research limitations/implications

These three qualitative models, based on a cognitive approach, using the set of parameters defined in this research, are a good tool for the spatial distribution of erosion in different mangroves in the world.

Originality/value

Global warming and climate change scenarios require adaptation and mitigation options supported by science-based strategies and solutions.

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Content available
Book part
Publication date: 30 July 2018

Abstract

Details

Marketing Management in Turkey
Type: Book
ISBN: 978-1-78714-558-0

Open Access
Article
Publication date: 2 January 2020

Donghai Liu, Youle Wang, Junjie Chen and Yalin Zhang

The purpose of this paper is to provide insights into the current practice, challenges and future development trends of intelligent compaction (IC) technology from a bibliometric…

3317

Abstract

Purpose

The purpose of this paper is to provide insights into the current practice, challenges and future development trends of intelligent compaction (IC) technology from a bibliometric perspective.

Design/methodology/approach

A bibliometric analysis on IC-relevant studies is presented. Through this quantitative manner, insights into the current IC research practice and development trends have been derived from the perspectives of publications and citations, spatial distribution, knowledge construction, structural variations, existing problems, and conclusions and recommendations.

Findings

Currently, IC applications are confronted with the issues of intelligent compaction measurement values (ICMVs) applicability, autonomous control, specifications and applications. To address the issues, three potential research directions are identified: a comprehensive ICMV measurement system that is designated for single layer analysis; autonomous control mechanisms with integrated management capabilities that can efficiently collaborate all stakeholders; and a standardized application workflow and the cost-benefit evaluation of IC in the context of the full life cycle.

Research limitations/implications

The literature used in this paper is collected from the Web of Science. Although the database covers almost all the important publications in IC field, studies not indexed by the database are not considered.

Originality/value

This research quantitatively analyzes the current IC practice and development trends from the perspectives of bibliometric analysis. It provides an overview of the knowledge construction and development of IC technology. The discussions about the problems and the suggested solutions can be useful for those interested in this field.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Abstract

Details

Sameness and Repetition in Contemporary Media Culture
Type: Book
ISBN: 978-1-80455-955-0

1 – 10 of 25