Search results

1 – 10 of 136
Article
Publication date: 28 January 2020

Matteo Perini, Paolo Bosetti and Nicolae Balc

This paper aims to decrease the cost of repairing operations, of the damaged mechanical components, by enabling the strong automation of the process and the reduction of manual…

343

Abstract

Purpose

This paper aims to decrease the cost of repairing operations, of the damaged mechanical components, by enabling the strong automation of the process and the reduction of manual labor. The main purpose of the hybrid repair process is to restore the original shape of the mechanical parts, by adding and removing material according to the mismatch between the damaged object and the virtual model, to restore its geometrical properties.

Design/methodology/approach

The DUOADD software tool translates the information collected from a 3D scanner into a digital computer aided design solid model, which can be manipulated through Siemens NX computer aided manufacturing (CAM), to obtain the tool paths, for the Direct Laser Deposition (DLD) technology. DUOADD uses octrees to effectively analyze the damaged region of the mechanical part and then to discretize the volume to be added to export CAM-compatible information as a 3D model, for additive operations.

Findings

DUOADD is the missing link between two valuable existing technologies, 3D scan and CAM for additive manufacturing, which can now be connected together, to perform automatic repairing.

Research limitations/implications

A trade-off between resolution and computational effort needs to be achieved.

Practical implications

DUOADD output is a STEP file, transferred to the CAM software to create the additive and the milling tool paths. The maximum deviation was 40 micrometers, as compared with the original solid model.

Originality/value

The paper presents a new procedure and new software tools (DUOADD), for the automation of damaged objects restoration process. DUOADD software provides suitable data for using a 5-axis computer numerical control (CNC) milling machine equipped with a DLD tool.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 April 2010

Hugo Medellin, Jonathan Corney, James Ritchie and Theodore Lim

This paper aims to investigate automatic assembly planning for robot and manual assembly.

Abstract

Purpose

This paper aims to investigate automatic assembly planning for robot and manual assembly.

Design/methodology/approach

The octree decomposition technique is applied to approximate a computer‐aided design model with an octree representation which is then used to generate robot and manual assembly plans. An assembly planning system able to generate assembly plans was developed to build these prototype models.

Findings

Octree decomposition is an effective assembly planning tool. Assembly plans can automatically be generated for robot and manual assembly using octree models.

Research limitations/implications

One disadvantage of the octree decomposition technique is that it approximates a part model with cubes instead of using the actual model. This limits its use and applications when complex assemblies must be planned, but in the context of prototyping can allow a rough component to be formed which can later be finished by hand.

Practical implications

Assembly plans can be generated using octree decomposition, however, new algorithms must be developed to overcome its limitations.

Originality/value

This paper has proved that the octree decomposition technique is an effective assembly planning tool. As a result, an assembly planning system has been developed. Assembly plans for automatic and manual assembly can be generated automatically by the proposed system, which is a novelty since there are no fully automatic assembly planning systems for manual assembly reported in the literature.

Details

Assembly Automation, vol. 30 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 September 2004

H. Medellín, J. Corney, J.B.C. Davies, T. Lim and J.M. Ritchie

This paper presents a novel approach for rapid prototyping based on the octree decomposition of 3D geometric models. The proposed method, referred as OcBlox, integrates an octree

1398

Abstract

This paper presents a novel approach for rapid prototyping based on the octree decomposition of 3D geometric models. The proposed method, referred as OcBlox, integrates an octree modeller, an assembly planning system, and a robotic assembly cell into an integrated system that builds approximate prototypes directly from 3D model data. Given an exact 3D model this system generates an octree decomposition of it, which approximates the shape cubic units referred as “Blox”. These cuboid units are automatically assembled to obtain an approximate physical prototype. This paper details the algorithms used to generate the octree's assembly sequence and demonstrates the feasibility of the OcBlox approach by describing a single resolution example of a prototype built with this automated system. An analysis of the potential of the approach to decrease the manufacturing time of physical components is detailed. Finally, the potential of OcBlox to support complex overhanging geometry is discussed.

Details

Assembly Automation, vol. 24 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 9 January 2024

Juelin Leng, Quan Xu, Tiantian Liu, Yang Yang and Peng Zheng

The purpose of this paper is to present an automatic approach for mesh sizing field generation of complicated  computer-aided design (CAD) models.

Abstract

Purpose

The purpose of this paper is to present an automatic approach for mesh sizing field generation of complicated  computer-aided design (CAD) models.

Design/methodology/approach

In this paper, the authors present an automatic approach for mesh sizing field generation. First, a source point extraction algorithm is applied to capture curvature and proximity features of CAD models. Second, according to the distribution of feature source points, an octree background mesh is constructed for storing element size value. Third, mesh size value on each node of background mesh is calculated by interpolating the local feature size of the nearby source points, and then, an initial mesh sizing field is obtained. Finally, a theoretically guaranteed smoothing algorithm is developed to restrict the gradient of the mesh sizing field.

Findings

To achieve high performance, the proposed approach has been implemented in multithreaded parallel using OpenMP. Numerical results demonstrate that the proposed approach is remarkably efficient to construct reasonable mesh sizing field for complicated CAD models and applicable for generating geometrically adaptive triangle/tetrahedral meshes. Moreover, since the mesh sizing field is defined on an octree background mesh, high-efficiency query of local size value could be achieved in the following mesh generation procedure.

Originality/value

How to determine a reasonable mesh size for complicated CAD models is often a bottleneck of mesh generation. For the complicated models with thousands or even ten thousands of geometric entities, it is time-consuming to construct an appropriate mesh sizing field for generating high-quality mesh. A parallel algorithm of mesh sizing field generation with low computational complexity is presented in this paper, and its usability and efficiency have been verified.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 September 2019

Bin Li, Jianzhong Fu, Yongjie Jessica Zhang, Weiyi Lin, Jiawei Feng and Ce Shang

Majority of the existing direct slicing methods have generated precise slicing contours from different surface representations, they do not carry any interior information…

Abstract

Purpose

Majority of the existing direct slicing methods have generated precise slicing contours from different surface representations, they do not carry any interior information. Whereas, heterogeneous solids are highly preferable for designing and manufacturing sophisticated models. To directly slice heterogeneous solids for additive manufacturing (AM), this study aims to present an algorithm using octree-based subdivision and trivariate T-splines.

Design/methodology/approach

This paper presents a direct slicing algorithm for heterogeneous solids using T-splines, which can be applied to AM based on the fused deposition modeling (FDM) technology. First, trivariate T-splines are constructed using a harmonic field with the gradient direction aligning with the slicing direction. An octree-based subdivision algorithm is then used to directly generate the sliced layers with heterogeneous materials. For FDM-based AM applications, the heterogeneous materials of each sliced layer are discretized into a finite number of partitions. Finally, boundary contours of each separated partition are extracted and paired according to the rules of CuraEngine to generate the scan path for FDM machines equipped with multi-nozzles.

Findings

The experimental results demonstrate that the proposed algorithm is effective and reliable, especially for solid objects with multiple materials, which could maintain the model integrity throughout the process from the original representation to the final product in AM.

Originality/value

Directly slicing heterogeneous solid using trivariate T-splines will be a powerful supplement to current technologies in AM.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 July 2022

Lin Zhang and Yingjie Zhang

This paper aims to quickly obtain an accurate and complete dense three-dimensional map of indoor environment with lower cost, which can be directly used in navigation.

Abstract

Purpose

This paper aims to quickly obtain an accurate and complete dense three-dimensional map of indoor environment with lower cost, which can be directly used in navigation.

Design/methodology/approach

This paper proposes an improved ORB-SLAM2 dense map optimization algorithm. This algorithm consists of three parts: ORB feature extraction based on improved FAST-12, feature point extraction with progressive sample consensus (PROSAC) and the dense ORB-SLAM2 algorithm for mapping. Here, the dense ORB-SLAM2 algorithm adds LoopClose optimization thread and dense point cloud map and octree map construction thread. The dense map is computationally expensive and occupies a large amount of memory. Therefore, the proposed method takes higher efficiency, voxel filtering can reduce the memory while ensuring the density of the map and then use the octree format to store the map to further reduce memory.

Findings

The improved ORB-SLAM2 algorithm is compared with the original ORB-SLAM2 algorithm, and the experimental results show that the map through improved ORB-SLAM2 can be directly used in navigation process with higher accuracy, shorter tracking time and smaller memory.

Originality/value

The improved ORB-SLAM2 algorithm can obtain a dense environment map, which ensures the integrity of data. The comparisons of FAST-12 and improved FAST-12, RANSAC and PROSAC prove that the improved FAST-12 and PROSAC both make the feature point extraction process faster and more accurate. Voxel filter helps to take small storage memory and low computation cost, and octree map construction on the dense map can be directly used in navigation.

Details

Assembly Automation, vol. 42 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 19 January 2010

Olivier Kerbrat, Pascal Mognol and Jean‐Yves Hascoet

The purpose of this paper is to propose a methodology to estimate manufacturing complexity for both machining and layered manufacturing. The goal is to take into account…

1839

Abstract

Purpose

The purpose of this paper is to propose a methodology to estimate manufacturing complexity for both machining and layered manufacturing. The goal is to take into account manufacturing constraints at design stage in order to realize tools (dies and molds) by a combination of a subtractive process (high‐speed machining) and an additive process (selective laser sintering).

Design/methodology/approach

Manufacturability indexes are defined and calculated from the tool computer‐aided design (CAD) model, according to geometric, material and specification information. The indexes are divided into two categories: global and local. For local indexes, a decomposition of the tool CAD model is used, based on an octree decomposition algorithm and a map of manufacturing complexity is obtained.

Findings

The manufacturability indexes values provide a well‐detailed view of which areas of the tool may advantageously be machined or manufactured by an additive process.

Originality/value

Nowadays, layered manufacturing processes are coming to maturity, but there is still no way to compare these new processes with traditional ones (like machining) at the early design stage. In this paper, a new methodology is proposed to combine additive and subtractive processes, for tooling design and manufacturing. A manufacturability analysis is based on an octree decomposition, with calculation of manufacturing complexity indexes from the tool CAD model.

Details

Rapid Prototyping Journal, vol. 16 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 August 2021

Elham Mahmoudi, Marcel Stepien and Markus König

A principle prerequisite for designing and constructing an underground structure is to estimate the subsurface's properties and obtain a realistic picture of stratigraphy…

Abstract

Purpose

A principle prerequisite for designing and constructing an underground structure is to estimate the subsurface's properties and obtain a realistic picture of stratigraphy. Obtaining direct measure of these values in any location of the built environment is not affordable. Therefore, any evaluation is afflicted with uncertainty, and we need to combine all available measurements, observations and previous knowledge to achieve an informed estimate and quantify the involved uncertainties. This study aims to enhance the geotechnical surveys based on a spatial estimation of subsoil to customised data structures and integrating the ground models into digital design environments.

Design/methodology/approach

The present study's objective is to enhance the geotechnical surveys based on a spatial estimation of subsoil to customised data structures and integrating the ground models into digital design environments. A ground model consisting of voxels is developed via Revit-Dynamo to represent spatial uncertainties employing the kriging interpolation method. The local arrangement of new surveys are evaluated to be optimised.

Findings

The visualisation model's computational performance is modified by using an octree structure. The results show that it adapts the structure to be modelled more efficiently. The proposed concept can identify the geological models' risky locations for further geological investigations and reveal an optimised experimental design. The modifications criteria are defined in global and local considerations.

Originality/value

It provides a transparent and repeatable approach to construct a spatial ground model for subsequent experimental or numerical analysis. In the first attempt, the ground model was discretised by a grid of voxels. In general, the required computing time primarily depends on the size of the voxels. This issue is addressed by implementing octree voxels to reduce the computational efforts. This applies especially to the cases that a higher resolution is required. The investigations using a synthetic soil model showed that the developed methodology fulfilled the kriging method's requirements. The effects of variogram parameters, such as the range and the covariance function, were investigated based on some parameter studies. Moreover, a synthetic model is used to demonstrate the optimal experimental design concept. Through the implementation, alternative locations for new boreholes are generated, and their uncertainties are quantified. The impact of the new borehole on the uncertainty measures are quantified based on local and global approaches. For further research to identify the geological models' risky spots, the development of this approach with additional criteria regarding the search neighbourhood and consideration of barriers and trends in real cases (by employing different interpolation methodologies) should be considered.

Details

Smart and Sustainable Built Environment, vol. 10 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 20 December 2021

Ruolong Qi and Wenfeng Liang

Nuclear waste tanks need to be cut into pieces before they can be safely disposed of, but the cutting process produces a large amount of aerosols with radiation, which is very…

Abstract

Purpose

Nuclear waste tanks need to be cut into pieces before they can be safely disposed of, but the cutting process produces a large amount of aerosols with radiation, which is very harmful to the health of the operator. The purpose of this paper is to establish an intelligent strategy for an integrated robot designed for measurement and cutting, which can accurately identify and cut unknown nuclear waste tanks and realize autonomous precise processing.

Design/methodology/approach

A robot system integrating point cloud measurement and plasma cutting is designed in this paper. First, accurate calibration methods for the robot, tool and hand-eye system are established. Second, for eliminating the extremely scattered point cloud caused by metal surface refraction, an omnidirectional octree data structure with 26 vectors is proposed to extract the point cloud model more accurately. Then, a minimum bounding box is calculated for limiting the local area to be cut, the local three-dimensional shape of the nuclear tank is fitted within the bounding box, in which the cutting trajectories and normal vectors are planned accurately.

Findings

The cutting precision is verified by changing the tool into a dial indicator in the simulation and the experiment process. The octree data structure with omnidirectional pointing vectors can effectively improve the filtering accuracy of the scattered point cloud. The point cloud filter algorithm combined with the structure calibration methods for the integrated measurement and processing system can ensure the final machining accuracy of the robot.

Originality/value

Aiming at the problems of large measurement noise interference, complex transformations between coordinate systems and difficult accuracy guarantee, this paper proposes structure calibration, point cloud filtering and point cloud-based planning algorithm, which can greatly improve the reliability and accuracy of the system. Simulation and experiment verify the final cutting accuracy of the whole system.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 February 1987

M.S. Shephard, P.L. Baehmann and K.R. Grice

The general structure of geometrically‐based automatic finite element modelling systems is discussed. The development of a specific system employing the modified‐quadtree and…

Abstract

The general structure of geometrically‐based automatic finite element modelling systems is discussed. The development of a specific system employing the modified‐quadtree and modified‐octree mesh generators is presented. The application of this approach to metal forming analysis is then given.

Details

Engineering Computations, vol. 4 no. 2
Type: Research Article
ISSN: 0264-4401

1 – 10 of 136