Search results

1 – 10 of over 5000
Open Access
Article
Publication date: 22 March 2022

Hüseyin Emre Ilgın

The aim of the study is to provide a comprehensive understanding of interrelations of structural systems and main planning considerations in supertall buildings (≥300 m).

3025

Abstract

Purpose

The aim of the study is to provide a comprehensive understanding of interrelations of structural systems and main planning considerations in supertall buildings (≥300 m).

Design/methodology/approach

Data were collected from 140 contemporary supertall towers using the case study method to analyze structural systems in the light of the key design considerations to contribute to the creation of more viable supertall building projects.

Findings

Central core typology, outriggered frame system, composite material and tapered prismatic and free forms were the most preferred features in supertall building design. Shear walled frame and tube systems occurred mostly in the 300–400 m height range, while outriggered frame systems were in the range of 300–600 m in height. Asia, the Middle East and North America mainly preferred outriggered frame systems, followed by tube systems. Considering the building function and form, the most preferred structural system in each of these groups was outriggered frame system, while mixed-use function stood out in all structural systems except in shear walled frame system.

Originality/value

To date, there has been no comprehensive study in the literature of the interrelations of structural systems and important planning considerations in the design of contemporary supertall towers through a large set of study samples. This critical issue was multidimensionally explored in this paper in light of 140 detailed case studies of supertall buildings around the world.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 12 April 2022

Hüseyin Emre Ilgın, Markku Karjalainen and Sofie Pelsmakers

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

3025

Abstract

Purpose

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

Design/methodology/approach

Data were collected through literature surveys and case studies to examine the architectural, structural and constructional points of view to contribute to knowledge about the increasing high-rise timber constructions globally.

Findings

The main findings of this study indicated that: (1) central cores were the most preferred type 10 of core arrangements; (2) frequent use of prismatic forms with rectilinear plans and regular extrusions were identified; (3) the floor-to-floor heights range between 2.81 and 3.30 m with an average of 3 m; (4) the dominance of massive timber use over hybrid construction was observed; (5) the most used structural system was the shear wall system; (6) generally, fire resistance in primary and secondary structural elements exceeded the minimum values specified in the building codes; (7) the reference sound insulation values used for airborne and impact sounds had an average of 50 and 56 dB, respectively.

Originality/value

There is no study in the literature that comprehensively examines the main architectural and structural design considerations of contemporary tall residential timber buildings.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 25 September 2019

Venkatesh Kodur, Puneet Kumar and Muhammad Masood Rafi

The current fire protection measures in buildings do not account for all contemporary fire hazard issues, which has made fire safety a growing concern. Therefore, this paper aims…

88915

Abstract

Purpose

The current fire protection measures in buildings do not account for all contemporary fire hazard issues, which has made fire safety a growing concern. Therefore, this paper aims to present a critical review of current fire protection measures and their applicability to address current challenges relating to fire hazards in buildings.

Design/methodology/approach

To overcome fire hazards in buildings, impact of fire hazards is also reviewed to set the context for fire protection measures. Based on the review, an integrated framework for mitigation of fire hazards is proposed. The proposed framework involves enhancement of fire safety in four key areas: fire protection features in buildings, regulation and enforcement, consumer awareness and technology and resources advancement. Detailed strategies on improving fire safety in buildings in these four key areas are presented, and future research and training needs are identified.

Findings

Current fire protection measures lead to an unquantified level of fire safety in buildings, provide minimal strategies to mitigate fire hazard and do not account for contemporary fire hazard issues. Implementing key measures that include reliable fire protection systems, proper regulation and enforcement of building code provisions, enhancement of public awareness and proper use of technology and resources is key to mitigating fire hazard in buildings. Major research and training required to improve fire safety in buildings include developing cost-effective fire suppression systems and rational fire design approaches, characterizing new materials and developing performance-based codes.

Practical implications

The proposed framework encompasses both prevention and management of fire hazard. To demonstrate the applicability of this framework in improving fire safety in buildings, major limitations of current fire protection measures are identified, and detailed strategies are provided to address these limitations using proposed fire safety framework.

Social implications

Fire represents a severe hazard in both developing and developed countries and poses significant threat to life, structure, property and environment. The proposed framework has social implications as it addresses some of the current challenges relating to fire hazard in buildings and will enhance overall fire safety.

Originality/value

The novelty of proposed framework lies in encompassing both prevention and management of fire hazard. This is unlike current fire safety improvement strategies, which focus only on improving fire protection features in buildings (i.e. managing impact of fire hazard) using performance-based codes. To demonstrate the applicability of this framework in improving fire safety in buildings, major limitations of current fire protection measures are identified and detailed strategies are provided to address these limitations using proposed fire safety framework. Special emphasis is given to cost-effectiveness of proposed strategies, and research and training needs for further enhancing building fire safety are identified.

Details

PSU Research Review, vol. 4 no. 1
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 10 November 2023

Hüseyin Emre Ilgın

Supertall towers (300 m+) offer a viable solution to the increasing demand for housing and commercial space caused by rapid urban growth, migration from rural to urban areas and…

Abstract

Purpose

Supertall towers (300 m+) offer a viable solution to the increasing demand for housing and commercial space caused by rapid urban growth, migration from rural to urban areas and economic expansion in Asia. In this particular context, the efficient utilization of space becomes a crucial factor in the design process for Asian skyscrapers as they seek to address the changing socioeconomic landscape. This study will provide valuable guidance, especially to architectural and structural designers in the pursuit of sustainable development for Asian skyscrapers by analyzing space efficiency.

Design/methodology/approach

The methodology employed in this paper involved a case study approach to gather data on 75 Asian supertall towers in order to examine space efficiency.

Findings

Findings of the research can be summarized as follows: (1) the average space efficiency of these towers was 67.5%, ranging from a minimum of 55% to a maximum of 82%; (2) the average proportion of the core area to the gross floor area (GFA) was 29.5%, with values ranging from 14% to 38%; (3) the majority of Asian skyscrapers exhibited a tapered form and adopted a central core typology, which catered to mixed-use and office purposes; (4) the most frequently utilized structural system was a combination of composite and outriggered frames; (5) space efficiency tended to decrease as the height of the tower increased; and (6) there was no noteworthy difference in the impact of various load-bearing systems and building forms on space efficiency.

Originality/value

There is a noticeable lack of extensive research into space efficiency in supertall towers in Asia, which serves as a hub for skyscrapers. This study seeks to fill this substantial gap in the current scientific literature.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 4 October 2019

Diego Rodrigues Boente and Paulo Roberto B. Lustosa

After assessing papers on efficiency, most of the studies available are focused on the analysis of efficiency measures, without providing a deep discussion of the factors that…

2020

Abstract

Purpose

After assessing papers on efficiency, most of the studies available are focused on the analysis of efficiency measures, without providing a deep discussion of the factors that determine efficiency. This study aims to evaluate the efficiency of Brazilian electricity distribution companies based on a structural model that enables the identification of a network of relationships among representative variables that contribute to efficiency.

Design/methodology/approach

Structural equation modeling was applied in a sample of 62 electricity distribution companies operating in Brazil, forming a balanced panel from 2010 to 2014. Then, the authors verified the model compliance according to the empirical evidence of the entities analyzed. This verification included a survey of the variables, which was supported by theoretical references related to the phenomenon studied. The data collected were statistically treated, and benchmarking models and multivariate techniques were used. Once the adjustments were made, the re-specified model was estimated using the maximum likelihood method.

Findings

The empirical model reached good adjustment rates. The analysis concluded that the constructs information system, structural system, management system and sociocultural system affect efficiency.

Originality/value

This study adds to several other papers, and this is one of its main contributions. Relationships among the constructs have been systematized according to literature in the form of a structural model, which will enable future researchers to have a reference frame of relevant studies and a research foundation in this area of knowledge. A third contribution is the model tested in a sample of Brazilian electricity distribution companies, whose results can be compared to other utility sectors (e.g. telecommunications) or to other countries' electrical sectors, thus providing an empirical basis for the proposed hypotheses. Finally, this study also offers a contribution to the Brazilian Electrical Energy Agency (Aneel, in Portuguese), a regulatory agency, providing mechanisms to guide tariff adjustments, seeking a balance between costs and the need for investments allied to tariff affordability.

Details

RAUSP Management Journal, vol. 55 no. 2
Type: Research Article
ISSN: 2531-0488

Keywords

Open Access
Article
Publication date: 7 October 2022

Hüseyin Emre Ilgın

To date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in…

2042

Abstract

Purpose

To date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in supertall towers (=300 m). In this paper, this important issue was explored using detailed data collected from 75 cases.

Design/methodology/approach

This paper was carried out with a comprehensive literature review including the database of the Council on Tall Buildings and Urban Habitat(CTBUH) (CTBUH, 2022), peer-reviewed journals, MSc theses and PhD dissertations, conference proceedings, fact sheets, architectural and structural magazines and other Internet sources. In this study, the case study method was also used to gather and consolidate information about supertall towers to analyze the interrelationships. Cases were 75 supertall buildings in various countries [44 from Asia (37 from China), 16 from the Middle East (6 from Dubai, the United Arab Emirates), 11 from the United States of America and 3 from Russia, 1 from the UK].

Findings

The paper's findings highlighted as follows: (1) for buildings in the height range of 300–399 m, the slenderness ratio was usually between 7 and 7.9 and megatall towers were frequently built at a slenderness ratio of 10–15; (2) the median slenderness ratio of buildings in the 400–599 m height ranges was around 8.6; (3) a trend towards supertall slender buildings (=8) was observed in Asia, the Middle East and North America; (4) residential, office and mixed-use towers had a median slenderness ratio of over 7.5; (5) all building forms were utilized in the construction of slender towers (>8); (6) the medium slenderness ratio was around 8 for supertall buildings constructed with outriggered frame and tube systems; (7) especially concrete towers reached values pushing the limits of slenderness (>10) and (8) since the number of some supertall building groups (e.g. steel towers) was not sufficient, establishing a scientific relationship between aspect ratio and related design criteria was not possible.

Originality/value

To date, there are no studies in the literature that provide a comprehensive understanding of the interrelationships between the slenderness ratio and the main design criteria in supertall towers (=300 m). This important issue was explored using detailed data collected from 75 cases.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 29 January 2021

Orlando Troisi, Anna Visvizi and Mara Grimaldi

The purpose of this paper is to explore the emergence of innovation in smart service systems to conceptualize how actor’s relationships through technology-enabled interactions can…

2929

Abstract

Purpose

The purpose of this paper is to explore the emergence of innovation in smart service systems to conceptualize how actor’s relationships through technology-enabled interactions can give birth to novel technologies, processes, strategies and value. The objectives of the study are: to detect the different enablers that activate innovation in smart service systems; and to explore how these can lead dynamically to the emergence of different innovation patterns.

Design/methodology/approach

The empirical research adopts an approach based on constructivist grounded theory, performed through observation and semi-structured interviews to investigate the development of innovation in the Italian CTNA (Italian acronym of National Cluster for Aerospace Technology).

Findings

The identification and re-elaboration of the novelties that emerged from the analysis of the Cluster allow the elaboration of a diagram that classifies five different shades of innovation, introduced through some related theoretical propositions: technological; process; business model and data-driven; social and eco-sustainable; and practice-based.

Originality/value

The paper embraces a synthesis view that detects the enabling structural and systems dimensions for innovation (the “what”) and the way in which these can be combined to create new technologies, resources, values and social rules (the “how” dimension). The classification of five different kinds of innovation can contribute to enrich extant research on value co-creation and innovation and can shed light on how given technologies and relational strategies can produce varied innovation outcomes according to the diverse stakeholders engaged.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Open Access
Article
Publication date: 30 January 2024

Hüseyin Emre Ilgın

Super-tall towers have surfaced as a pragmatic remedy to meet the escalating requisites for both residential and commercial areas and to stimulate economic growth in the Middle…

Abstract

Purpose

Super-tall towers have surfaced as a pragmatic remedy to meet the escalating requisites for both residential and commercial areas and to stimulate economic growth in the Middle East. In this unique regional context, optimizing spatial usage stands as a paramount consideration in the architectural design of skyscrapers. Despite the proliferation of super-tall towers, there exists a conspicuous dearth of comprehensive research pertaining to space efficiency in Middle Eastern skyscrapers. This study endeavors to bridge this substantial gap in the literature.

Design/methodology/approach

The research methodology utilized in this paper adopts a case study approach to accumulate data regarding super-tall towers in the Middle East, with a specific focus on investigating space efficiency. A total of 27 super-tall tower cases from the Middle East were encompassed within the analytical framework.

Findings

Key findings can be succinctly summarized as follows: (1) average space efficiency was 75.5%, with values fluctuating between a minimum of 63% and a maximum of 84%; (2) average ratio of the core area to the gross floor area (GFA) registered 21.3%, encompassing a spectrum ranging from 11% to 36%; (3) predominantly, Middle Eastern skyscrapers exhibited a prismatic architectural form coupled with a central core typology. This architectural configuration mostly catered to residential and mixed-use functions; (4) the combination of concrete and outrigger frame systems was the most frequently utilized; (5) as the height of the tower increased, space efficiency tended to experience a gradual decline and (6) no significant discernible disparities were detected in the impact of diverse load-bearing systems and architectural forms on space efficiency.

Originality/value

Despite the proliferation of super-tall towers, there exists a conspicuous dearth of comprehensive research pertaining to space efficiency in Middle Eastern skyscrapers. This study endeavors to bridge this substantial gap in the literature.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Open Access
Article
Publication date: 25 October 2021

Yun Bai, Saeed Babanajad and Zheyong Bian

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces…

Abstract

Purpose

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces budgetary limitations. Managing a network of transportation infrastructure assets, especially when the number is large, is a multifaceted challenge. This paper aims to develop a life-cycle cost analysis (LCCA) based transportation infrastructure asset management analytical framework to study the impacts of a few key parameters/factors on deterioration and life-cycle cost. Using the bridge as an example infrastructure type, the framework incorporates an optimization model for optimizing maintenance, repair, rehabilitation (MR&R) and replacement decisions in a finite planning horizon.

Design/methodology/approach

The analytical framework is further developed through a series of model variations, scenario and sensitivity analysis, simulation processes and numerical experiments to show the impacts of various parameters/factors and draw managerial insights. One notable analysis is to explicitly model the epistemic uncertainties of infrastructure deterioration models, which have been overlooked in previous research. The proposed methodology can be adapted to different types of assets for solving general asset management and capital planning problems.

Findings

The experiments and case studies revealed several findings. First, the authors showed the importance of the deterioration model parameter (i.e. Markov transition probability). Inaccurate information of p will lead to suboptimal solutions and results in excessive total cost. Second, both agency cost and user cost of a single facility will have significant impacts on the system cost and correlation between them also influences the system cost. Third, the optimal budget can be found and the system cost is tolerant to budge variations within a certain range. Four, the model minimizes the total cost by optimizing the allocation of funds to bridges weighing the trade-off between user and agency costs.

Originality/value

On the path forward to develop the next generation of bridge management systems methodologies, the authors make an exploration of incorporating the epistemic uncertainties of the stochastic deterioration models into bridge MR&R capital planning and decision-making. The authors propose an optimization approach that does not only incorporate the inherent stochasticity of bridge deterioration but also considers the epistemic uncertainties and variances of the model parameters of Markovian transition probabilities due to data errors or modeling processes.

1 – 10 of over 5000