Search results

1 – 10 of over 5000
Article
Publication date: 12 December 2023

Niveen Badra, Hosam Hegazy, Mohamed Mousa, Jiansong Zhang, Sharifah Akmam Syed Zakaria, Said Aboul Haggag and Ibrahim Abdul-Rashied

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel…

Abstract

Purpose

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel pedestrian bridges (SPBs). The cost estimation process uses two main parameters, but the main goal is to create a cost estimation model.

Design/methodology/approach

This study explores a flexible model design that uses computing capabilities for decision-making. Using cost optimization techniques, the model can select an optimal pedestrian bridge system based on multiple criteria that may change independently. This research focuses on four types of SPB systems prevalent in Egypt and worldwide. The study also suggests developing a computerized cost and weight optimization model that enables decision-makers to select the optimal system for SPBs in keeping up with the criteria established for that system.

Findings

In this paper, the authors developed an optimization model for cost estimates of SPBs. The model considers two main parameters: weight and cost. The main contribution of this study based on a parametric study is to propose an approach that enables structural engineers and designers to select the optimum system for SPBs.

Practical implications

The implications of this research from a practical perspective are that the study outlines a feasible approach to develop a computerized model that utilizes the capabilities of computing for quick cost optimization that enables decision-makers to select the optimal system for four common SPBs based on multiple criteria that may change independently and in concert with cost optimization during the preliminary design stage.

Social implications

The model can choose an optimal system for SPBs based on multiple criteria that may change independently and in concert with cost optimization. The resulting optimization model can forecast the optimum cost of the SPBs for different structural spans and road spans based on local unit costs of materials cost of steel structures, fabrication, erection and painting works.

Originality/value

The authors developed a computerized model that uses spreadsheet software's capabilities for cost optimization, enabling decision-makers to select the optimal system for SPBs meeting the criteria established for such a system. Based on structural characteristics and material unit costs, this study shows that using the optimization model for estimating the total direct cost of SPB systems, the project cost can be accurately predicted based on the conceptual design status, and positive prediction outcomes are achieved.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 March 2024

Ghada ElSayad

Since the outbreak of the COVID-19 pandemic, the demand for online services has risen, with e-payment emerging as a prominent option for customers seeking faster and more…

Abstract

Purpose

Since the outbreak of the COVID-19 pandemic, the demand for online services has risen, with e-payment emerging as a prominent option for customers seeking faster and more convenient transactions to complete their online purchases. Nevertheless, e-payment adoption in Egypt remains a challenge that requires further investigation. Thus, this study aims to investigate the factors influencing online customers’ attitudes and intentions towards adopting e-payment for online transactions, social influence, perceived ease of use, perceived usefulness, perceived trust, structural assurance and perceived privacy/security risk.

Design/methodology/approach

The data were gathered from 302 customers in Egypt and structurally analysed based on partial least squares structural equation modelling (PLS-SEM).

Findings

The findings revealed that social influence, perceived usefulness and perceived trust are significant antecedents of attitude. Furthermore, perceived usefulness, perceived trust, perceived privacy/security risk and attitude directly influence behavioural intention. Structural assurance and perceived trust directly influence perceived privacy/security risk. Moreover, perceived usefulness, perceived trust and attitude were found to have several mediating roles.

Research limitations/implications

This study adds new empirical evidence from a developing country regarding the adoption of e-payment among online customers. In addition, its findings can help the government, practitioners and policymakers understand how to promote customers’ positive attitudes and encourage their intentions towards using e-payment.

Originality/value

The findings of this study can contribute to the digital transformation strategy in Egypt by providing insights into enhancing online shoppers’ attitudes and intentions towards e-payment adoption. This, in turn, can boost Egyptian e-commerce and the country's digital economy as a whole.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 29 January 2021

Orlando Troisi, Anna Visvizi and Mara Grimaldi

The purpose of this paper is to explore the emergence of innovation in smart service systems to conceptualize how actor’s relationships through technology-enabled interactions can…

2949

Abstract

Purpose

The purpose of this paper is to explore the emergence of innovation in smart service systems to conceptualize how actor’s relationships through technology-enabled interactions can give birth to novel technologies, processes, strategies and value. The objectives of the study are: to detect the different enablers that activate innovation in smart service systems; and to explore how these can lead dynamically to the emergence of different innovation patterns.

Design/methodology/approach

The empirical research adopts an approach based on constructivist grounded theory, performed through observation and semi-structured interviews to investigate the development of innovation in the Italian CTNA (Italian acronym of National Cluster for Aerospace Technology).

Findings

The identification and re-elaboration of the novelties that emerged from the analysis of the Cluster allow the elaboration of a diagram that classifies five different shades of innovation, introduced through some related theoretical propositions: technological; process; business model and data-driven; social and eco-sustainable; and practice-based.

Originality/value

The paper embraces a synthesis view that detects the enabling structural and systems dimensions for innovation (the “what”) and the way in which these can be combined to create new technologies, resources, values and social rules (the “how” dimension). The classification of five different kinds of innovation can contribute to enrich extant research on value co-creation and innovation and can shed light on how given technologies and relational strategies can produce varied innovation outcomes according to the diverse stakeholders engaged.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Open Access
Article
Publication date: 30 January 2024

Hüseyin Emre Ilgın

Super-tall towers have surfaced as a pragmatic remedy to meet the escalating requisites for both residential and commercial areas and to stimulate economic growth in the Middle…

Abstract

Purpose

Super-tall towers have surfaced as a pragmatic remedy to meet the escalating requisites for both residential and commercial areas and to stimulate economic growth in the Middle East. In this unique regional context, optimizing spatial usage stands as a paramount consideration in the architectural design of skyscrapers. Despite the proliferation of super-tall towers, there exists a conspicuous dearth of comprehensive research pertaining to space efficiency in Middle Eastern skyscrapers. This study endeavors to bridge this substantial gap in the literature.

Design/methodology/approach

The research methodology utilized in this paper adopts a case study approach to accumulate data regarding super-tall towers in the Middle East, with a specific focus on investigating space efficiency. A total of 27 super-tall tower cases from the Middle East were encompassed within the analytical framework.

Findings

Key findings can be succinctly summarized as follows: (1) average space efficiency was 75.5%, with values fluctuating between a minimum of 63% and a maximum of 84%; (2) average ratio of the core area to the gross floor area (GFA) registered 21.3%, encompassing a spectrum ranging from 11% to 36%; (3) predominantly, Middle Eastern skyscrapers exhibited a prismatic architectural form coupled with a central core typology. This architectural configuration mostly catered to residential and mixed-use functions; (4) the combination of concrete and outrigger frame systems was the most frequently utilized; (5) as the height of the tower increased, space efficiency tended to experience a gradual decline and (6) no significant discernible disparities were detected in the impact of diverse load-bearing systems and architectural forms on space efficiency.

Originality/value

Despite the proliferation of super-tall towers, there exists a conspicuous dearth of comprehensive research pertaining to space efficiency in Middle Eastern skyscrapers. This study endeavors to bridge this substantial gap in the literature.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 18 August 2023

Deanna Craig and M.Z. Naser

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply…

Abstract

Purpose

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply, fire can break out anywhere, at any time and for any number of reasons. Despite the apparent need, the fire design of structures still relies on expensive fire tests, complex finite element simulations and outdated procedures with little room for innovation. This paper aims to discuss the aforementioned issues.

Design/methodology/approach

This primer highlights the latest state of the art in this area with regard to performance-based design in fire structural engineering. In addition, this short review also presents a series of examples of successful implementation of performance-based fire design of structures from around the world.

Findings

A comparison between global efforts clearly shows the advances put forth by European and Oceanian efforts as opposed to the rest of the world. In addition, it can be clearly seen that most performance-based fire designs are related to steel and composite structures.

Originality/value

In one study, this paper presents a concise and global view to performance-based fire design of structures from success stories from around the world.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 December 2023

Mohammed Jazeel, Sam Paul P., Lawrance Gunaraj and Hemalatha G.

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to…

37

Abstract

Purpose

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to connect dampers with the structure, joints are used. In this paper, three different configurations of double-lap joints were designed, developed and tested.

Design/methodology/approach

This paper aims to analyze three different categories of double-lap single-bolted joints that are used in connecting dampers with concrete and steel frame structures. These joints were designed and tested using computational, numerical and experimental methods. The studies were conducted to examine the reactions of the joints during loading conditions and to select the best joints for the structures that allow easy maintenance of the dampers and also withstand structural deformation when the damper is active during seismicity. Also, a computational analysis was performed on the designed joints integrated with the M25 concrete beam column junction. In this investigation, experimental study was carried out in addition to numerical and computational methods during cyclic load.

Findings

It was observed from the result that during deformation the double-base multiplate lap joint was suitable for buildings because the deformations on the joint base was negligible when compared with other joints. From the computational analysis, it was revealed that the three double joints while integrated with the beam column junction of M25 grade concrete structure, the damages induced by the double-base multiplate joint was negligible when compared with other two joints used in this study.

Originality/value

To prevent the collapse of the building during seismicity, dampers are used and further connecting the damper with the building structures, joints are used. In this paper, three double-lap joints in different design configuration were studied using computational, numerical and experimental techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 October 2023

Haizhe Yu, Xiaopeng Deng and Na Zhang

The smart contract provides an opportunity to improve existing contract management practices in the construction projects by replacing traditional contracts. However, translating…

Abstract

Purpose

The smart contract provides an opportunity to improve existing contract management practices in the construction projects by replacing traditional contracts. However, translating the contracts into computer languages is considered a major challenge which has not been investigated. Thus, it is necessary to: (1) identify the obstructing clauses in real-world contracts; and (2) analyze the replacement's technical and economic feasibility. This paper aims to discuss the aforementioned objectives.

Design/methodology/approach

This study identified the flexibility clauses of traditional contracts and their corresponding functions through inductive content analysis with representative standard contracts as materials. Through a speculative analysis in accordance to design science paradigm and new institutional economics, the economic and technical feasibility of existing approaches, including enumeration method, fuzzy algorithm, rough sets theory, machine learning and artificial intelligence, to transform respective clauses (functions) into executable codes are analyzed.

Findings

The clauses of semantic flexibility and structural flexibility are identified from the contracts. The transformation of semantic flexibility is economically and/or technically infeasible with existing methods and materials. But with more data as materials and methods of rough sets or machine learning, the transformation can be feasible. The transformation of structural flexibility is technically possible however economically unacceptable.

Practical implications

Given smart contracts' inability to provide the required flexibility for construction projects, smart contracts will be more effective in less relational contracts. For construction contracts, the combination of smart contracts and traditional contracts is recommended. In the long run, with the sharing or trading of data in the industry level and the integration of machine learning or artificial intelligence reducing relevant costs, the automation of contract management can be achieved.

Originality/value

This study contributes to the understanding of the smart contract's limitations in industry scenarios and its role in construction project management.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 May 2023

Rakesh Sai Kumar Mandala and R. Ramesh Nayaka

This paper aims to identify modern construction techniques for affordable housing, such as prefabrication and interlocking systems, that can save time and cost while also…

Abstract

Purpose

This paper aims to identify modern construction techniques for affordable housing, such as prefabrication and interlocking systems, that can save time and cost while also providing long-term sustainable benefits that are desperately needed in today's construction industry.

Design/methodology/approach

The need for housing is growing worldwide, but traditional construction cannot cater to the demand due to insufficient time. There should be some paradigm shift in the construction industry to supply housing to society. This paper presented a state-of-the-art review of modern construction techniques practiced worldwide and their advantages in affordable housing construction by conducting a systematic literature review and applying the backward snowball technique. The paper reviews modern prefabrication techniques and interlocking systems such as modular construction, formwork systems, light gauge steel/cold form steel construction and sandwich panel construction, which have been globally well practiced. It was understood from the overview that modular construction, including modular steel construction and precast concrete construction, could reduce time and costs efficiently. Further enhancement in the quality was also noticed. Besides, it was observed that light gauge steel construction is a modern phase of steel that eases construction execution efficiently. Modern formwork systems such as Mivan (Aluminium Formwork) have been reported for their minimum construction time, which leads to faster construction than traditional formwork. However, the cost is subjected to the repetitions of the formwork. An interlocking system is an innovative approach to construction that uses bricks made of sustainable materials such as earth that conserve time and cost.

Findings

The study finds that the prefabrication techniques and interlocking system have a lot of unique attributes that can enable the modern construction sector to flourish. The study summarizes modern construction techniques that can save time and cost, enhancing the sustainability of construction practices, which is the need of the Indian construction industry in particular.

Research limitations/implications

This study is limited to identifying specific modern construction techniques for time and cost savings, lean concepts and sustainability which are being practiced worldwide.

Practical implications

Modern formwork systems such as Mivan (Aluminium Formwork) have been reported for their minimum construction time which leads to faster construction than traditional formwork.

Social implications

The need for housing is growing rapidly all over the world, but traditional construction cannot cater to the need due to insufficient time. There should be some paradigm shift in the construction industry to supply housing to society.

Originality/value

This study is unique in identifying specific modern construction techniques for time and cost savings, lean concepts and sustainability which are being practiced worldwide.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 13 June 2023

Adam Lovasz

Drawing on the work of Niklas Luhmann, the paper argues that technology can be viewed as a self-referential system which is autonomous from both human beings and other function…

Abstract

Purpose

Drawing on the work of Niklas Luhmann, the paper argues that technology can be viewed as a self-referential system which is autonomous from both human beings and other function systems of society. The paper aims to develop a philosophy of technology from the work of Niklas Luhmann. To achieve this aim, it draws upon the systems-theory work of Jacques Ellul, a philosopher of technology who focuses on the autonomous potential of technological evolution.

Design/methodology/approach

The paper draws on the work of Niklas Luhmann and Jacques Ellul to explore the theme of autonomous technology and what this means for our thinking about technological issues in the twenty-first century. Insights from these two thinkers and researchers working in the Luhmannian sociological tradition are applied to remote work.

Findings

The sociological approach of Luhmann, coupled with Ellul's insights into the autonomous nature of technology, can help us develop a systems theory of technology which takes seriously its irreducibility to human functions.

Research limitations/implications

The paper contributes to the growing sociological literature that thematizes the Luhmannian approach to technology, helping us better understand this phenomenon and think in new ways about what technological autonomy means.

Originality/value

The paper brings together the work of Luhmann, Ellul and contemporary researchers to advance a new understanding of technology and technological communication.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 5000