Search results

1 – 10 of 54
Article
Publication date: 10 May 2024

Adnan Rasul, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis and Mohsin Iqbal

The stress concentration factor (SCF) is commonly utilized to assess the fatigue life of a tubular T-joint in offshore structures. Parametric equations derived from experimental…

Abstract

Purpose

The stress concentration factor (SCF) is commonly utilized to assess the fatigue life of a tubular T-joint in offshore structures. Parametric equations derived from experimental testing and finite element analysis (FEA) are utilized to estimate the SCF efficiently. The mathematical equations provide the SCF at the crown and saddle of tubular T-joints for various load scenarios. Offshore structures are subjected to a wide range of stresses from all directions, and the hotspot stress might occur anywhere along the brace. It is critical to incorporate stress distribution since using the single-point SCF equation can lead to inaccurate hotspot stress and fatigue life estimates. As far as we know, there are no equations available to determine the SCF around the axis of the brace.

Design/methodology/approach

A mathematical model based on the training weights and biases of artificial neural networks (ANNs) is presented to predict SCF. 625 FEA simulations were conducted to obtain SCF data to train the ANN.

Findings

Using real data, this ANN was used to create mathematical formulas for determining the SCF. The equations can calculate the SCF with a percentage error of less than 6%.

Practical implications

Engineers in practice can use the equations to compute the hotspot stress precisely and rapidly, thereby minimizing risks linked to fatigue failure of offshore structures and assuring their longevity and reliability. Our research contributes to enhancing the safety and reliability of offshore structures by facilitating more precise assessments of stress distribution.

Originality/value

Precisely determining the SCF for the fatigue life of offshore structures reduces the potential hazards associated with fatigue failure, thereby guaranteeing their longevity and reliability. The present study offers a systematic approach for using FEA and ANN to calculate the stress distribution along the weld toe and the SCF in T-joints since ANNs are better at approximating complex phenomena than standard data fitting techniques. Once a database of parametric equations is available, it can be used to rapidly approximate the SCF, unlike experimentation, which is costly and FEA, which is time consuming.

Details

International Journal of Structural Integrity, vol. 15 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 June 2024

Adnan Rasul, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis, Mohsin Iqbal and Khurshid Alam

Stress concentration factors (SCFs) are commonly used to assess the fatigue life of tubular T-joints in offshore structures. SCFs are usually estimated from parametric equations…

Abstract

Purpose

Stress concentration factors (SCFs) are commonly used to assess the fatigue life of tubular T-joints in offshore structures. SCFs are usually estimated from parametric equations derived from experimental data and finite element analysis (FEA). However, these equations provide the SCF at the crown and saddle points of tubular T-joints only, while peak SCF might occur anywhere along the brace. Using the SCF at the crown and saddle can lead to inaccurate hotspot stress and fatigue life estimates. There are no equations available for calculating the SCF along the T-joint's brace axis under in-plane and out-of-plane bending moments.

Design/methodology/approach

In this work, parametric equations for estimating SCFs are developed based on the training weights and biases of an artificial neural network (ANN), as ANNs are capable of representing complex correlations. 1,250 finite element simulations for tubular T-joints with varying dimensions subjected to in-plane bending moments and out-of-plane bending moments were conducted to obtain the corresponding SCFs for training the ANN.

Findings

The ANN was subsequently used to obtain equations to calculate the SCFs based on dimensionless parameters (α, β, γ and τ). The equations can predict the SCF around the T-joint's brace axis with an error of less than 8% and a root mean square error (RMSE) of less than 0.05.

Originality/value

Accurate SCF estimation for determining the fatigue life of offshore structures reduces the risks associated with fatigue failure while ensuring their durability and dependability. The current study provides a systematic approach for calculating the stress distribution at the weld toe and SCF in T-joints using FEA and ANN, as ANNs are better at approximating complex phenomena than typical data fitting techniques. Having a database of parametric equations enables fast estimation of SCFs, as opposed to costly testing and time-consuming FEA.

Details

International Journal of Structural Integrity, vol. 15 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 June 2019

Chien-Yuan Hou

The purpose of this paper is to complete fatigue analysis of welded joints considering both the crack initiation sites and crack coalescence, and to generate virtual welded…

Abstract

Purpose

The purpose of this paper is to complete fatigue analysis of welded joints considering both the crack initiation sites and crack coalescence, and to generate virtual welded specimens for computer simulation of fatigue life on a specimen-by-specimen basis; knowledge regarding the weld toe stress concentration factor (SCF) sequence is essential. In this study, attempts were made to analyze the sequence and to find a simple method to generate the sequence using computers.

Design/methodology/approach

Laser scanning technique was used to acquire the real three-dimensional weld toe geometry of welded specimens. The scanned geometry was digitally sectioned, and three-dimensional finite element (FE) models of the scanned specimens were constructed and the weld toe SCF sequence was calculated. The numbers in the sequence were analyzed using a simple autoregression model and the statistical properties of the sequence were acquired.

Findings

The autoregression analysis showed the value of a weld toe SCF is linearly related to its neighboring factor with a high correlation. When a factor value at a toe location is known, the neighboring factor can be simulated by a simple linear equation with a random residual. The weld toe factor sequence can thus be formed by repeatedly using the linear equation with a residual. The generated sequence exhibits close statistical properties to those of the real sequence obtained from FE results.

Practical implications

When the weld toe SCF sequence is known, it is possible to foresee potential crack locations and the subsequent crack coalescence. The results of the current study will be the foundation for the future work on fatigue analysis of welded joints considering the effects of crack initiation site and crack coalescence.

Originality/value

The weld toe SCF sequence was rarely discussed previously because of a lack of the available data. The current study is the first work to investigate the statistical properties of the sequence and found that a simple autoregression equation can be used to perform the analysis. This study is also the first work that successfully generates a weld toe SCF sequence, which can be used to simulate virtual welded specimens.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 August 2022

Vikas Goyat, Tawakol A. Enab, Gyander Ghangas, Sunil Kadiyan and Ajay Kumar

Inverse distance weighted (IDW) functions are utilized to make models of heterogenous materials such as functionally graded materials (FGM) in computer aided design (CAD)…

Abstract

Purpose

Inverse distance weighted (IDW) functions are utilized to make models of heterogenous materials such as functionally graded materials (FGM) in computer aided design (CAD). However, the use of IDW function based FGM for stress concentration reduction is scarcely available in the literature. The present work aims to analyze and reduce the stress concentration around a circular hole in IDW function-based finite FGM panel under biaxial loading.

Design/methodology/approach

Extended finite element method (XFEM) model was prepared using MATLAB to investigate the effect of geometrical and material parameters on the stress concentration factor (SCF). The obtained results of IDW FGM are compared with homogeneous material as well as two different FGMs based on the power-law function.

Findings

It was observed that the IDW function based FGM is simple in material modeling, conformal with all domain boundaries and shows lower stress concentration in comparison with the homogeneous material case. While comparing IDW FGM with power-law based FGMs, it was observed that the IDW FGM has least values of stress concentration for low d/W (diameter of the hole to panel width ratio) and is comparable with power-law based FGMs for high d/W.

Originality/value

It can be stated that IDW FGM is highly suitable for stress concentration reduction in finite panels with d/W = 0.5, which can further be intended for obtaining optimum hole and panel designs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 May 2024

Mohsin Iqbal, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis, Muhammad Iqbal and Adnan Rasul

Composite materials are effective alternatives for rehabilitating critical members of offshore platforms, bridges, and other structures. The structural response of composite…

Abstract

Purpose

Composite materials are effective alternatives for rehabilitating critical members of offshore platforms, bridges, and other structures. The structural response of composite reinforcement greatly depends on the orientation of fibres in the composite material. Joints are the most critical part of tubular structures. Various existing studies have identified optimal reinforcement orientations for a single load component, but none has addressed the combined load case, even though most practical loads are multiplanar.

Design/methodology/approach

This study investigates the optimal orientation of composite reinforcement for reducing stress concentration factors (SCF) of tubular KT-joints. The joint reinforcement was modelled and simulated using ANSYS. A parametric study was carried out to determine the effect of the orientations of reinforcement in the interface region on SCF at every 15° offset along the weld toe using linear extrapolation of principal stresses. The impact of orientation for uniplanar and multiplanar loads was investigated, and a general result about optimum orientation was inferred.

Findings

It was found that the maximum decrease of SCF is achieved by orienting the fibres of composite reinforcement along the maximum SCF. Notably, the optimal direction for any load configuration was consistently orthogonal to the weld toe of the chord-brace interface. As such, unidirectional composites wrapped around the brace axis, covering both sides of the brace-chord interface, are most effective for SCF reduction.

Originality/value

The findings of this study are crucial for adequate reinforcement of tubular joints using composites, offering a broader and universally applicable optimum orientation that transcends specific joint and load configuration.

Details

International Journal of Structural Integrity, vol. 15 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 December 2020

Mohannad Jreissat and Mohammad A. Gharaibeh

The purpose of this paper is to investigate the strain concentration factor in a central countersunk hole riveted in rectangular plates under uniaxial tension using finite element…

Abstract

Purpose

The purpose of this paper is to investigate the strain concentration factor in a central countersunk hole riveted in rectangular plates under uniaxial tension using finite element and response surface methods.

Design/methodology/approach

In this work, ANSYS software was elected to create the finite element model of the present structure, execute the analysis and generate strain concentration factor (,) data. Response surface method was implemented to formulate a second order equation to precisely compute (,) based on the geometric and material parameters of the present problem.

Findings

The computations of this formula are accurate and in a great agreement with finite element analysis (FEA) data. This equation was further used for obtaining optimum hole and plate designs.

Originality/value

An optimum design of the countersunk hole and the plate that minimizes the (,) value was achieved and hence validated with FEA findings.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 May 2002

W. Waldman, M. Heller, R. Kaye and F. Rose

In recent years, a novel method for computing loadflow orientations and loadpaths, which is based on iterative solutions of non‐linear equations and finite element results, has…

Abstract

In recent years, a novel method for computing loadflow orientations and loadpaths, which is based on iterative solutions of non‐linear equations and finite element results, has emerged in the literature. In the present investigation, the prior formulation and approach has been enhanced by deriving explicit expressions for computing loadflow orientations. The new equations produce more accurate loadflow orientations and improve the fidelity of calculated loadpaths. In particular, for a typical loaded plate containing a hole, the density of loadflow lines is also shown to provide accurate values of stress concentration factor. Subsequently, loadflow visualisation for biaxially loaded plates containing non‐optimal and optimal holes is undertaken to identify key features of the stress distributions. It is found that regions of “recirculation” are apparent for non‐optimal hole shapes, whereas no recirculation zones are present for optimal shapes. In general, it is considered that loadflow visualisation is a simple but powerful tool for use by structural designers and analysts.

Details

Engineering Computations, vol. 19 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 January 2021

Amin S. Azar, Magnus Reiersen, Even W. Hovig, Mohammed M’hamdi, Spyros Diplas and Mikkel M. Pedersen

This study aims to introduce a novel approach in form of a comprehensive software suite to help understanding and optimizing the build orientation toward maximizing the fatigue…

Abstract

Purpose

This study aims to introduce a novel approach in form of a comprehensive software suite to help understanding and optimizing the build orientation toward maximizing the fatigue lifetime of complex geometries. The objective is to find an optimized build orientation under a given in-service loading state, which brings on smoother surfaces in stressed regions, mitigated roughness-induced stress concentration and deferred crack initiation stage. The solution addresses scenarios that no post-build surface treatment can be applied.

Design/methodology/approach

To account for the surface topography, the staircase induced surface roughness is registered as a function of build angle using the white light interferometry characterization, based on which the stress concentration factor (kt) is calculated. Thereafter, the developed module in “Fatlab toolbox” is used to find the optimum build angle, considering the integrated surface orientations and stress analysis under a given loading condition.

Findings

Surface topography creates local stress concentrations upon loading, directly influencing the fatigue lifetime. It is a well-established fact that the conditions of the staircase geometry and surface roughness affect the magnitude of the stress concentration upon loading, which is influenced by the build orientation of the component. The proposed solution suggests the best build orientation that mitigates staircase-related surface roughness.

Originality/value

The suggested numerical approach assists the designers with positioning of the part on the build plate to minimize the build orientation-induced surface roughness and improve the as-built fatigue lifetime of the component.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 June 2017

L. Chikmath and B. Dattaguru

Many failures of aircraft structural components in the past were attributed to cracks emanating from joints, which are identified as the most critical locations. In cases using…

Abstract

Purpose

Many failures of aircraft structural components in the past were attributed to cracks emanating from joints, which are identified as the most critical locations. In cases using the recently emerging structural health monitoring (SHM) systems, continuous monitoring needs be carried out at many major joint locations. The purpose of this paper is to develop computational techniques for fastener joints, including the possible change in contact conditions and change in boundary values at the pin-hole interface. These techniques are used for the prognostic analysis of pin-loaded lug joints with rigid/elastic pin subjected to fatigue loading by estimating the residual life of the component at any given instance to assist the SHM systems.

Design/methodology/approach

Straight attachment lug joints with rigid/elastic push-fit pin and smooth pin-hole interface are modelled in commercial software MSC PATRAN. In each case, the joint is subjected to various types of fatigue load cycles, and for each type of cycles, the critical locations and the stress concentrations are identified from the stress analysis. Later, for each type of fatigue cycle, the number of cycles required for crack initiation is estimated. A small crack is located at these points, and the number of cycles required to reach the critical length when unstable crack growth occurs is also computed. The novelty in the analysis of life estimations is that it takes into account possible changes in contact conditions at the pin-hole interface during load reversals in fatigue loading.

Findings

The current work on fastener joints brings out the way the load reversals leading to change in contact conditions (consequently changing boundary conditions) are handled during fatigue loading on a push-fit joint. The novel findings are the effect of the size of the hole/lug width, elasticity of the material and the type of load cycles on the fatigue crack initiation and crack growth life. Given other parameters constant, bigger size hole and stiffer pin lead to lesser life. Under load controlled fatigue cycles, pull load contributes to significant part of fatigue life.

Originality/value

The analysis considers the changing contact conditions at the pin-hole interface during fatigue cycles with positive and negative stress ratios. The results presented in this paper are of value to the life prediction of structural joints for various load cycles (for both pull-pull cases, in which the load ratios are positive, and pull-push cycles, where the load ratios are negative). The prognostic data can be used to effectively monitor the critical locations with joints for SHM applications.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 June 2019

Bharath Kenchappa, Lokamanya Chikmath and Bhagavatula Dattaguru

Lug joints with fasteners play a crucial role in connecting many major components of the aircraft. Most of the failures in the past were credited to the damages initiating and…

Abstract

Purpose

Lug joints with fasteners play a crucial role in connecting many major components of the aircraft. Most of the failures in the past were credited to the damages initiating and progressing from these types of joints. Ensuring the structural integrity of these fastener joints is a major issue in many engineering structures, especially in aerospace components, which would otherwise lead to fatal failure. The purpose of this paper is to adopting the prognostic approach for analysing these lug joints with fasteners subjected to off-axis loading by estimating the crack initiation and crack growth life of these joints. This data will be useful to estimate the remaining life of these joints at any given stage of operations, which is mandatory in structural health monitoring (SHM).

Design/methodology/approach

Straight and tapered lug joints are modelled using the finite element method in MSC PATRAN and analysed in MSC NASTRAN. These lug joints are analysed with a push fit fastener. The contact/separation regions at the pin–lug interface are carefully monitored throughout the analysis for various loading conditions. Critical locations in these lug joints are identified through stress analysis. Fatigue crack initiation and fatigue crack growth analysed is carried out at these locations for different load ratios. A computational method is proposed to estimate the cycles to reach crack initiation and cycles at which the crack in the lug joint become critical by integrating several known techniques.

Findings

Analysis carried out in this paper describes the importance of tapered lug joints, particularly when subjected to non-conventional way of loading, i.e. off-axis loading. There is a partial loss of contact between pin and lug upon pin loading, and this does not change further with monotonically increasing pin load. But during load reversals, there is a change in contact/separation regions which is effectively handled by inequality constraints in the boundary conditions. Crack growth in these lug joints pertains to mixed-mode cracking and is computed through the MVCCI technique.

Originality/value

Most of the earlier works were carried out on in-plane pin loading along the axis of symmetry of the lug. The current work considers the off-axis pin loading by loading the lug joints with transverse and oblique pin load. The significance of taper angle under such loading condition is brought in this paper. The results obtained in this paper through prognostic approach are of direct relevance to the SHM and damage tolerance design approach where the safety of the structural components is of foremost priority.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 54