Search results

1 – 10 of over 4000
Article
Publication date: 25 October 2019

Laura Boniotti, Stefano Foletti, Stefano Beretta and Luca Patriarca

Additive manufacturing (AM) enables the production of lightweight parts with complex shapes and small dimensions. Recent improvements in AM techniques have allowed a significant…

Abstract

Purpose

Additive manufacturing (AM) enables the production of lightweight parts with complex shapes and small dimensions. Recent improvements in AM techniques have allowed a significant growth of AM for industrial applications. In particular, AM is suitable for the production of materials shaped in lattice, which are very attractive for their lightweight design and their multi-functional properties. AM parts are often characterised by geometrical imperfections, residual porosity, high surface roughness which typically lead to stress/strain localisations and decreasing the resistance of the structure. This paper aims to focus on the study of the effects of geometrical irregularities and stress concentrations derived from them.

Design/methodology/approach

In this paper, several technique were combined: 3D tomography, experimental tests, digital image correlation and finite elements (FE) models based on both the as-designed and the as-manufactured geometries of lattice materials. The Digital Image Correlation technique allowed to measure local deformations in the specimen during the experimental test. The micro-computed tomography allowed to reconstruct the as-manufactured geometries of the specimens, from which the geometrical quality of the micro-structure is evaluated to run FE analyses.

Findings

Experimental and numerical results were compared by means of a stress concentration factor. This factor was calculated in three different specimens obtained from three-different printing processes to compare and understand their mechanical properties. Considering the as-designed geometry, it is not possible to model geometrical imperfections, and a FE model based on an as-manufactured geometry is needed. The results show that the mechanical properties of the printed samples are directly related to the statistical distribution of the stress concentration factor.

Originality/value

In this work, several techniques were combined to study the mechanical behaviour of lattice micro-structures. Lattice materials obtained by different selective laser melting printing parameters show different mechanical behaviours. A stress concentration factor can be assumed as a measure of the quality of these mechanical properties.

Details

Rapid Prototyping Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 April 2015

Martin Kadlec and Václav Kafka

Polymer composite panels are widely used in aeronautic and aerospace structures due to the high strength-to-weight ratios of these structures. The purpose of this paper is to…

Abstract

Purpose

Polymer composite panels are widely used in aeronautic and aerospace structures due to the high strength-to-weight ratios of these structures. The purpose of this paper is to determine the strain fields and failure mechanisms during the failure of the impacted composite laminates when subjected to compression.

Design/methodology/approach

A series of compression-after-impact (CAI) tests was performed on composite plates 150×100×4 mm3 made of a carbon-fibre-reinforced epoxy resin matrix. A digital image correlation and fractographic analysis by means of optical and electron microscopy are used for this purpose.

Findings

The full-field strain measurements indicate a concentrated band of compressive strain near the impact, where buckling occurs. The results indicate that the strain concentration factor can be considered to be a failure criterion. The shear strain visualisation around the impact reveals an area of heterogeneous deformation that is comparable to the detected delamination area acquired by an ultrasonic technique. Fibre and inter-fibre fractures are described for the particular impact site regions.

Originality/value

These experiments could improve numerical models for the CAI analyses and help to build a new criterion for this severe failure mode.

Details

International Journal of Structural Integrity, vol. 6 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 December 2020

Mohannad Jreissat and Mohammad A. Gharaibeh

The purpose of this paper is to investigate the strain concentration factor in a central countersunk hole riveted in rectangular plates under uniaxial tension using finite element…

Abstract

Purpose

The purpose of this paper is to investigate the strain concentration factor in a central countersunk hole riveted in rectangular plates under uniaxial tension using finite element and response surface methods.

Design/methodology/approach

In this work, ANSYS software was elected to create the finite element model of the present structure, execute the analysis and generate strain concentration factor (,) data. Response surface method was implemented to formulate a second order equation to precisely compute (,) based on the geometric and material parameters of the present problem.

Findings

The computations of this formula are accurate and in a great agreement with finite element analysis (FEA) data. This equation was further used for obtaining optimum hole and plate designs.

Originality/value

An optimum design of the countersunk hole and the plate that minimizes the (,) value was achieved and hence validated with FEA findings.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 May 2009

Timothy C. Kennedy and Sergio G. Arias

The purpose of this paper is to determine the validity of using classical laminated plate theory to predict strain concentration factors in notched laminates under bending.

Abstract

Purpose

The purpose of this paper is to determine the validity of using classical laminated plate theory to predict strain concentration factors in notched laminates under bending.

Design/methodology/approach

The objective was accomplished by comparing results predicted by classical theory to those from more refined theories that incorporate transverse shear and other 3D effects in the analysis. Three notch sizes and two laminate types were considered. The results were obtained through finite element analysis.

Findings

Strain concentration factors predicted by the classical theory were generally found to be significantly lower than those predicted by the more refined theories. However, these differences tended to be very localized to the vicinity of the notch tip.

Originality/value

This study points out a potential deficiency in a commonly used design tool. The seriousness of this deficiency can best be determined by further research, particularly through a systematic testing program.

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 July 1955

B.R. Noton

A two‐spar cantilever box beam with forty‐five degrees sweep and oblique ribs placed parallel to the root clamping section was the subject of a series of static tests. Stress and…

Abstract

A two‐spar cantilever box beam with forty‐five degrees sweep and oblique ribs placed parallel to the root clamping section was the subject of a series of static tests. Stress and strain distributions were determined, primarily in a region distant from the root and tip disturbances, to permit a stringent comparison with three well‐known swept wing theories and the simple theory of bending. Torsional and flexural stiffnesses were also measured and compared with these theories. The sequence of calculation for each method is presented and it is found that two of the theories provide accurate predictions of the stresses, strains and stiffnesses. The influence of rivet slip and rivet flexibility on the stiffnesses of the box is mentioned. As a secondary aim of the investigation, the distribution of normal and shear strain has been measured in the cover skin and spar webs at the root connexion. The design of swept box examined has been the subject of research in a number of establishments and a review of this other work is included.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 7
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 19 February 2013

Mathew Tsang, Sangarapillai Kanapathipillai and Mahiuddin Chowdhury

For many years engineers and scientists have speculated about the relationship between the load carrying capacity of notched bars and their stress concentration factors. However…

Abstract

For many years engineers and scientists have speculated about the relationship between the load carrying capacity of notched bars and their stress concentration factors. However, past attempts to quantify this relationship have failed and the problem remains largely unresolved. This study strongly supports the view that this relationship exists, and that there are correlations between load carrying capacity and stress concentration for notched bars subjected to tension. The study was done with the use of computer aided technology and finite element analysis, which allowed for more rigorous testing procedures when compared with conventional tensile testing methods. Two studies were conducted: firstly, an analysis which assumed perfectly elastic conditions, and secondly, an analysis which assumed realistic elastic-plastic conditions. Variables of interest included maximum strain energy density, plastic collapse load, elastic stress concentration factor, elastic-plastic stress concentration factor, root radius and the distance between the notch surface to the maximum load. It was found that these variables correlate to one another and that most of them are dependent on material properties. Both linear and non-linear relationships were found. Linear relationships were quantifiable and were represented by equations. Equations for most of the non-linear relationships could not be substantiated, as there were not enough data points present.

Details

World Journal of Engineering, vol. 10 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 September 2023

Vicente-Segundo Ruiz-Jacinto, Karina-Silvana Gutiérrez-Valverde, Abrahan-Pablo Aslla-Quispe, José-Manuel Burga-Falla, Aldo Alarcón-Sucasaca and Yersi-Luis Huamán-Romaní

This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite…

Abstract

Purpose

This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacked machine learning (ML) model's iterative optimization during training enables precise fatigue predictions (2.41% root mean square error [RMSE], R2 = 0.975) for diverse structural components. Outliers are found in regression analysis, indicating potential overestimation for thickness transition specimens with extended lifetimes and underestimation for open-hole specimens. Correlations between fatigue life, stress factors, nominal stress and temperature are unveiled, enriching comprehension of LCF, thus enhancing solder behavior predictions.

Design/methodology/approach

This paper introduces stacked ML as a novel approach for estimating LCF life of SAC305 solder in various structural parts. It builds a fatigue life database using FEM and CDM model. The stacked ML model iteratively optimizes its structure, yielding accurate fatigue predictions (2.41% RMSE, R2 = 0.975). Outliers are observed: overestimation for thickness transition specimens and underestimation for open-hole ones. Correlations between fatigue life, stress factors, nominal stress and temperature enhance predictions, deepening understanding of solder behavior.

Findings

The findings of this paper highlight the successful application of the SMLA in accurately estimating the LCF life of SAC305 solder across diverse structural components. The stacked ML model, trained iteratively, demonstrates its effectiveness by producing precise fatigue lifetime predictions with a RMSE of 2.41% and an “R2” value of 0.975. The study also identifies distinct outlier behaviors associated with different structural parts: overestimations for thickness transition specimens with extended fatigue lifetimes and underestimations for open-hole specimens. The research further establishes correlations between fatigue life, stress concentration factors, nominal stress and temperature, enriching the understanding of solder behavior prediction.

Originality/value

The authors confirm the originality of this paper.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 April 2023

Govind Waghmare and Rachayya Rudramuni Arakerimath

This study aims to identify the significant factors of the multi-dimpling process, determine the most influential parameters of multi-dimpling to increase the dimple sheet…

Abstract

Purpose

This study aims to identify the significant factors of the multi-dimpling process, determine the most influential parameters of multi-dimpling to increase the dimple sheet strength and make a low-cost model of the multi-dimpling for sheet metal industries. To create an empirical expression linking process performance to different input factors, the percentage contribution of these elements is also calculated.

Design/methodology/approach

Taguchi grey relational analysis is used to apply a new effective strategy to experimental data in order to optimize the dimpling process parameters while taking into account several performance factors and low-cost model. In addition, a statistical method called ANOVA is used to ensure that the results are adequate. The optimal process parameters that generate improved mechanical properties are determined via grey relational analysis (GRA). Every level of the process variables, a response table and a grey relational grade (GRG) has been established.

Findings

The factors created for experiment number 2 with 0.5 mm as the sheet thickness, 2 mm dimple diameter, 0.5 mm dimple depth, 8 mm dimples spacing and the material of SS 304 were allotted rank one, which belonged to the optimal parameter values giving the greatest value of GRG.

Practical implications

The study demonstrates that the process parameters of any dimple sheet manufacturing industry can be optimized, and the effect of process parameters can be identified.

Originality/value

The proposed low-cost model is relatively economical and readily implementable to small- and large-scale industries using newly developed multi-dimpling multi-punch and die.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 28 July 2023

Xuemei Pan, Jianhui Liu, Youtang Li, Feilong Hua, Xiaochuang Chen and Zhen Zhang

The stress state near the notch affects fatigue damage directly, but quantifying the stress field is difficult. The purpose of this study is to provide a mathematical description…

Abstract

Purpose

The stress state near the notch affects fatigue damage directly, but quantifying the stress field is difficult. The purpose of this study is to provide a mathematical description method of the stress field near the notch to achieve a reliable assessment of the fatigue life of notched specimens.

Design/methodology/approach

Firstly, the stress distribution of notched specimens of different materials and shapes under different stress levels is investigated, and a method for calculating the stress gradient impact factor is presented. Then, the newly defined stress gradient impact factor is used to describe the stress field near the notch, and an expression for the stress at any point along a specified path is developed. Furthermore, by combining the mathematical expressions for the stress field near the notch, a multiaxial fatigue life prediction model for notched shaft specimens is established based on the damage mechanics theory and closed solution method.

Findings

The stress gradient factor for notched specimens with higher stress concentration factors (V60-notch, V90-notch) varies to a certain extent when the external load and material change, but for notched specimens with relatively lower stress concentration factors (C-notch, U-notch, stepped shaft), the stress gradient factor hardly varies with the change in load and material, indicating that the shape of the notch has a greater influence on the stress gradient. It is also found that the effect of size on the stress gradient factor is not obvious for notched specimens with different shapes, there is an obvious positive correlation between the normal stress gradient factor and the normal stress concentration factor compared with the relationship between the shear stress gradient factor and the stress concentration factor. Moreover, the predicted results of the proposed model are in better agreement with the experimental results of five kinds of materials compared with the FS model, the SWT model, and the Manson–Coffin equation.

Originality/value

In this paper, a new stress gradient factor is defined based on the stress distribution of a smooth specimen. Then, a mathematical description of the stress field near the notch is provided, which contains the nominal stress, notch size, and stress concentration factor which is calculated by the finite element method (FEM). In addition, a multiaxial fatigue life prediction model for shaft specimens with different notch shapes is established with the newly established expressions based on the theory of damage mechanics and the closed solution method.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 July 2022

Yongliang Wang, Jin Huang and Guocheng Wang

This study aims to analyse the deep resource mining that causes high in situ stress, and the disturbance of tunnelling and mining which may induce large stress concentration

Abstract

Purpose

This study aims to analyse the deep resource mining that causes high in situ stress, and the disturbance of tunnelling and mining which may induce large stress concentration, plastic deformation and rock strata compression deformation. The depth of deep resources, excavation rate and multilayered heterogeneity are critical factors of excavation disturbance in deep rock. However, at present, there are few engineering practices used in deep resource mining, and it is difficult to analyse the high in situ stress and dynamic three-dimensional (3D) excavation process in laboratory experiments. As a result, an understanding of the behaviours and mechanisms of the dynamic evolution of the stress field and plastic zone in deep tunnelling and mining surrounding rock is still lacking.

Design/methodology/approach

This study introduced a 3D engineering-scale finite element model and analysed the scheme involved the elastoplastic constitutive and element deletion techniques, while considering the influence of the deep rock mass of the roadway excavation, coal seam mining-induced stress, plastic zone in the process of mining disturbance of the in situ stress state, excavation rate and layered rock mass properties at the depths of 500 m, 1,500 m and 2,500 m of several typical coal seams, and the tunnelling and excavation rates of 0.5 m/step, 1 m/step and 2 m/step. An engineering-scale numerical model of the layered rock and soil body in an actual mining area were also established.

Findings

The simulation results of the surrounding rock stress field, dynamic evolution and maximum value change of the plastic zone, large deformation and settlement of the layered rock mass are obtained. The numerical results indicate that the process of mining can be accelerated with the increase in the tunnelling and excavation rate, but the vertical concentrated stress induced by the surrounding rock intensifies with the increase in the excavation rate, which becomes a crucial factor affecting the instability of the surrounding rock. The deep rock mass is in the high in situ stress state, and the stress and plastic strain maxima of the surrounding rock induced by the tunnelling and mining processes increase sharply with the excavation depth. In ultra-deep conditions (depth of 2,500 m), the maximum vertical stress is quickly reached by the conventional tunnelling and mining process. Compared with the deep homogeneous rock mass model, the multilayered heterogeneous rock mass produces higher mining-induced stress and plastic strain in each layer during the entire process of tunnelling and mining, and each layer presents a squeeze and dislocation deformation.

Originality/value

The results of this study can provide a valuable reference for the dynamic evolution of stress and plastic deformation in roadway tunnelling and coal seam mining to investigate the mechanisms of in situ stress at typical depths, excavation rates, stress concentrations, plastic deformations and compression behaviours of multilayered heterogeneity.

Details

Engineering Computations, vol. 39 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 4000