Search results

1 – 10 of 101
Article
Publication date: 1 September 1996

Bridget Marx

Looks at complex applications for lasers, optics and electro‐optics, including use in areas such as inspection and measurement. Features ESPI (electronic speckle pattern…

204

Abstract

Looks at complex applications for lasers, optics and electro‐optics, including use in areas such as inspection and measurement. Features ESPI (electronic speckle pattern interferometry) systems and their use in the automotive industry and presents a case study involving specialist systems used in areas such as measuring print rollers and inspecting engine cylinder walls. Touches on other new techniques in the field such as chemical imaging and the recent use of Doppler vibrometry to quantify pure bending vibrations in rotating components.

Details

Sensor Review, vol. 16 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 January 2021

Amin S. Azar, Magnus Reiersen, Even W. Hovig, Mohammed M’hamdi, Spyros Diplas and Mikkel M. Pedersen

This study aims to introduce a novel approach in form of a comprehensive software suite to help understanding and optimizing the build orientation toward maximizing the fatigue…

Abstract

Purpose

This study aims to introduce a novel approach in form of a comprehensive software suite to help understanding and optimizing the build orientation toward maximizing the fatigue lifetime of complex geometries. The objective is to find an optimized build orientation under a given in-service loading state, which brings on smoother surfaces in stressed regions, mitigated roughness-induced stress concentration and deferred crack initiation stage. The solution addresses scenarios that no post-build surface treatment can be applied.

Design/methodology/approach

To account for the surface topography, the staircase induced surface roughness is registered as a function of build angle using the white light interferometry characterization, based on which the stress concentration factor (kt) is calculated. Thereafter, the developed module in “Fatlab toolbox” is used to find the optimum build angle, considering the integrated surface orientations and stress analysis under a given loading condition.

Findings

Surface topography creates local stress concentrations upon loading, directly influencing the fatigue lifetime. It is a well-established fact that the conditions of the staircase geometry and surface roughness affect the magnitude of the stress concentration upon loading, which is influenced by the build orientation of the component. The proposed solution suggests the best build orientation that mitigates staircase-related surface roughness.

Originality/value

The suggested numerical approach assists the designers with positioning of the part on the build plate to minimize the build orientation-induced surface roughness and improve the as-built fatigue lifetime of the component.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 July 2021

Jing Wang, Hongying Mi, Weigui Zhou, Xin Yang and Yan He

This study aims to the preparation and tribological characteristics of graphene/triangular copper nanoplate composites (abbreviated as GN/Cu nanoplates) as grease additive and…

Abstract

Purpose

This study aims to the preparation and tribological characteristics of graphene/triangular copper nanoplate composites (abbreviated as GN/Cu nanoplates) as grease additive and clarifies the growth mechanism and tribological mechanism of GN/Cu nanoplates by different analysis methods. In this paper, it is expected to alleviate the problems of easy aggregation and poor dispersion stability of graphene in lubricants and provide theoretical support for the application of graphene and its composites in the tribology field.

Design/methodology/approach

In this study, the GN/Cu nanoplates have been successfully prepared by the electrostatic self-assembly method. The structural characteristics of GN/Cu nanoplates were analyzed via transmission electron microscopy and X-ray diffraction. Then the tribological properties of GN/Cu nanoplates were investigated under different loads with SRV-IV [Schwingung, Reibung, Verschleiß (German); oscillating, friction, wear (English translation)] tribotester. White-light interferometry was applied to quantify the wear loss of the disk. The element chemical state on worn surfaces was analyzed by an X-ray photoelectron spectroscope to clarify the tribological mechanism of graphene composites.

Findings

The electrostatic force between the negative charge of graphene and the positive charge of triangular copper nanoplates promotes the self-assembly of GN/Cu nanoplates. With the addition of GN/Cu nanoplates, the wear loss and average friction coefficient under the load of 200 N have been decreased by 72.6% and 18.3%, respectively. It is concluded that the combined action of graphene deposition film and the copper melting film formed on the worn surface could effectively improve the antiwear ability and friction reduction performance of the grease.

Originality/value

This manuscript fulfills a new approach for the preparation of GN/Cu nanoplates. At the same time, its tribological properties and mechanism as a lubricating additive were studied which provide theoretical support for the application of graphene and its composites in the tribology field.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 June 2016

Luiz Carlos Paiva Gouveia and Bhaskar Choubey

The purpose of this paper is to offer an introduction to the technological advances of the complementary metal–oxide–semiconductor (CMOS) image sensors along the past decades. The…

1557

Abstract

Purpose

The purpose of this paper is to offer an introduction to the technological advances of the complementary metal–oxide–semiconductor (CMOS) image sensors along the past decades. The authors review some of those technological advances and examine potential disruptive growth directions for CMOS image sensors and proposed ways to achieve them.

Design/methodology/approach

Those advances include breakthroughs on image quality such as resolution, capture speed, light sensitivity and color detection and advances on the computational imaging.

Findings

The current trend is to push the innovation efforts even further, as the market requires even higher resolution, higher speed, lower power consumption and, mainly, lower cost sensors. Although CMOS image sensors are currently used in several different applications from consumer to defense to medical diagnosis, product differentiation is becoming both a requirement and a difficult goal for any image sensor manufacturer. The unique properties of CMOS process allow the integration of several signal processing techniques and are driving the impressive advancement of the computational imaging.

Originality/value

The authors offer a very comprehensive review of methods, techniques, designs and fabrication of CMOS image sensors that have impacted or will impact the images sensor applications and markets.

Details

Sensor Review, vol. 36 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 August 2016

Thomas D.A. Jones, David Flynn, Marc P.Y. Desmulliez, Dennis Price, Matthew Beadel, Nadia Strusevich, Mayur Patel, Chris Bailey and Suzanne Costello

This study aims to understand the influence of megasonic (MS)-assisted agitation on printed circuit boards (PCBs) electroplated using copper (Cu) electrolyte solutions to improve…

Abstract

Purpose

This study aims to understand the influence of megasonic (MS)-assisted agitation on printed circuit boards (PCBs) electroplated using copper (Cu) electrolyte solutions to improve plating efficiencies through enhanced ion transportation.

Design/methodology/approach

The impact of MS-assisted agitation on topographical properties of the electroplated surfaces was studied through a design of experiments by measuring surface roughness, which is characterised by values of the parameter Ra as measured by white light phase shifting interferometry and high-resolution scanning electron microscopy.

Findings

An increase in Ra from 400 to 760 nm after plating was recorded for an increase in acoustic power from 45 to 450 W. Roughening increased because of micro-bubble cavitation energy and was supported through direct imaging of the cavitation. Current thieving effect by the MS transducer induced low currents, leading to large Cu grain frosting and reduction in the board quality. Current thieving was negated in plating trials through specific placement of transducer. Wavy electroplated surfaces, due to surface acoustic waves, were also observed to reduce the uniformity of the deposit.

Research limitations/implications

The formation of unstable transient cavitation and variation of the topology of the Cu surface are unwanted phenomena. Further plating studies using MS agitation are needed, along with fundamental simulations, to determine how the effects can be reduced or prevented.

Practical implications

This study can help identify manufacturing settings required for high-quality MS-assisted plating and promote areas for further investigation, leading to the development of an MS plating manufacturing technique.

Originality/value

This study quantifies the topographical changes to a PCB surface in response to MS agitation and evidence for deposited Cu artefacts due to acoustic effects.

Details

Circuit World, vol. 42 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 18 March 2020

Jennifer Eickworth, Enes Aydin, Martin Dienwiebel, Thomas Rühle, Patrick Wilke and Tobias Reinhard Umbach

Interactions of different additive types for antiwear/friction modification on surfaces can be synergistic or antagonistic in nature. This paper aims to investigate whether there…

Abstract

Purpose

Interactions of different additive types for antiwear/friction modification on surfaces can be synergistic or antagonistic in nature. This paper aims to investigate whether there are interactions between different additives in the adsorption process and whether they synergistic or antagonistic. The yielded correlations will be validated with tribological experiments to answer the question whether synergistic effects in adsorption also lead to synergistic effects in wear reduction.

Design/methodology/approach

In a representative study, zinc dialkyl-dithiophosphate and dithiophosphate were elaborated in combination with two different friction modifiers, a glycerol monooleate and an organic friction modifier. As base oils, mineral oil and poly alpha olefine were used. The adsorption behavior was studied via quartz crystal microbalance with dissipation using Fe2O3 coated quartz crystals. The tribological performance was evaluated in a ball-on-three disk tribometer. White light interferometry was used to determine the wear volume and X-ray photoelectron spectroscopy depth profiles of the tribofilms were obtained on selected systems.

Findings

The combination of dithiophosphate and an organic friction modifier (OFM) revealed a synergistic effect in terms of wear. If the initially formed films are viscoelastic, the third body formation during a tribo experiment is more pronounced and thereby wear can be reduced. As a mechanism, the adsorption of the OFM on the formed antiwear layer is proposed.

Originality/value

Correlating the analytical findings with performance experiments provides further understanding of the interactions between different constituents and their implications on film formation processes and wear reduction mechanisms.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2019-0293/

Details

Industrial Lubrication and Tribology, vol. 72 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 July 2023

Wenzhe Ji

The purpose of this study is to further improve the performance of surface texture, the chemical polishing method was introduced and the effect of it on the surface morphology and…

Abstract

Purpose

The purpose of this study is to further improve the performance of surface texture, the chemical polishing method was introduced and the effect of it on the surface morphology and tribological properties of the surface texture was investigated.

Design/methodology/approach

The surface texture was processed on the surface of 304 stainless steel with laser technology in air medium. Hydrochloric acid solution (pH 2.4 ± 0.05) was selected and used to soak the prepared texture samples for 12 h. The surface morphology and elemental content of the samples were measured with the white light interferometry, SEM and EDS. To obtain the effect of acid corrosion on the tribological properties of textured surfaces, the samples were tested under dry friction and oil lubrication conditions.

Findings

The detailed study shows that the melt and burr of surface texture produced with laser processing was reduced due to the corrosion effect of hydrochloric acid. Therefore, the better interfacial tribological properties was obtained due to the improvement of surface-textured morphology.

Originality/value

The main contribution of this work is to provide a new reference for improving surface texture quality. It also lays a foundation for improving the tribological properties of the textured interface.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2023-0094/

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 2004

Xiaopei Chen, Yan Zhang, Gary Pickrell and Jiju Antony

In this paper, experimental design techniques are utilized to understand sources of variation in an optical fiber sensor design and development project in a university research…

1263

Abstract

In this paper, experimental design techniques are utilized to understand sources of variation in an optical fiber sensor design and development project in a university research setting. Application of the Taguchi method of robust design assisted fiber optic sensor development in a cost‐effective and timely manner. According to the analysis, compensation of the source of the variation identified in the experimental design results was achieved on a new design concept of a multiplexed optical fiber sensor. The experimental results and conclusions not only are suitable for this sensor structure, but also are useful for other fiber optic sensors based on the technique of Fabry‐Perot interferometry.

Details

International Journal of Productivity and Performance Management, vol. 53 no. 8
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 17 April 2006

Antonio Baldi, Paola Pedone and Daniele Romano

The paper presents the design of an optical profilometer, a device used for the reconstruction of the micro‐geometry of mechanical parts in applications where high precision is…

Abstract

The paper presents the design of an optical profilometer, a device used for the reconstruction of the micro‐geometry of mechanical parts in applications where high precision is needed. The design is based on Robust Design, a major methodology for quality improvement of engineering systems. Several design solutions, namely different hardware and software setups of the device, are compared in order to select a configuration realising a desired trade‐off between performance and cost. The peculiarity of the dsgin strategy is the use of a computer m odel of the measurement process where the physical part of the process is simulated. This allows for an extensive exploration of the design space, thus opening the way to product innovation.

Details

Asian Journal on Quality, vol. 7 no. 1
Type: Research Article
ISSN: 1598-2688

Keywords

Article
Publication date: 3 February 2020

Dingding Xiang, Xipeng Tan, Zhenhua Liao, Jinmei He, Zhenjun Zhang, Weiqiang Liu, Chengcheng Wang and Beng Tor Shu

This paper aims to study the wear properties of electron beam melted Ti6Al4V (EBM-Ti6Al4V) in simulated body fluids for orthopedic implant biomedical applications compared with…

Abstract

Purpose

This paper aims to study the wear properties of electron beam melted Ti6Al4V (EBM-Ti6Al4V) in simulated body fluids for orthopedic implant biomedical applications compared with wrought Ti6Al4V (Wr-Ti6Al4V).

Design/methodology/approach

Wear properties of EBM-Ti6Al4V compared with Wr-Ti6Al4V against ZrO2 and Al2O3 have been investigated under dry friction and the 25 Wt.% newborn calf serum (NCS) lubricated condition using a ball-on-disc apparatus reciprocating motion. The microstructure, composition and hardness of the samples were characterized using scanning electron microscopy (SEM), x-ray diffraction and a hardness tester, respectively. The contact angles with 25 Wt.% NCS were measured by a contact angle apparatus. The wear parameters, wear 2D and 3D morphology were obtained using a 3D white light interferometer and SEM.

Findings

EBM-Ti6Al4V yields a higher contact angle than the Wr-Ti6Al4V with the 25 Wt.% NCS. EBM-Ti6Al4V couplings exhibit lower coefficients of friction compared with the Wr-Ti6Al4V couplings under both conditions. There is only a slight difference in the wear resistance between the Wr-Ti6Al4V and EBM-Ti6Al4V alloys. Both Wr-Ti6Al4V and EBM-Ti6Al4V suffer from similar friction and wear mechanisms, i.e. adhesive and abrasive wear in dry friction, while abrasive wear under the NCS condition. The wear depth and wear volume of the ZrO2 couplings are lower than those of the Al2O3 couplings under both conditions.

Originality/value

This paper helps to establish baseline bio-tribological data of additively manufactured Ti6Al4V by electron beam melting in simulated body fluids for orthopedic applications, which will promote the application of additive manufacturing in producing the orthopedic implant.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 101