Search results

1 – 10 of over 3000
Book part
Publication date: 19 November 2014

Gail Blattenberger, Richard Fowles and Peter D. Loeb

This paper examines variable selection among various factors related to motor vehicle fatality rates using a rich set of panel data. Four Bayesian methods are used. These include…

Abstract

This paper examines variable selection among various factors related to motor vehicle fatality rates using a rich set of panel data. Four Bayesian methods are used. These include Extreme Bounds Analysis (EBA), Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), and Bayesian Additive Regression Trees (BART). The first three of these employ parameter estimation, the last, BART, involves no parameter estimation. Nonetheless, it also has implications for variable selection. The variables examined in the models include traditional motor vehicle and socioeconomic factors along with important policy-related variables. Policy recommendations are suggested with respect to cell phone use, modernization of the fleet, alcohol use, and diminishing suicidal behavior.

Article
Publication date: 1 April 1981

Arthur Meidan

Introduction Operations research, i.e. the application of scientific methodology to operational problems in the search for improved understanding and control, can be said to have…

Abstract

Introduction Operations research, i.e. the application of scientific methodology to operational problems in the search for improved understanding and control, can be said to have started with the application of mathematical tools to military problems of supply bombing and strategy, during the Second World War. Post‐war these tools were applied to business problems, particularly production scheduling, inventory control and physical distribution because of the acute shortages of goods and the numerical aspects of these problems.

Details

Management Decision, vol. 19 no. 4/5
Type: Research Article
ISSN: 0025-1747

Article
Publication date: 8 August 2022

Mohammad Shahid, Zubair Ashraf, Mohd Shamim and Mohd Shamim Ansari

Optimum utilization of investments has always been considered one of the most crucial aspects of capital markets. Investment into various securities is the subject of portfolio…

Abstract

Purpose

Optimum utilization of investments has always been considered one of the most crucial aspects of capital markets. Investment into various securities is the subject of portfolio optimization intent to maximize return at minimum risk. In this series, a population-based evolutionary approach, stochastic fractal search (SFS), is derived from the natural growth phenomenon. This study aims to develop portfolio selection model using SFS approach to construct an efficient portfolio by optimizing the Sharpe ratio with risk budgeting constraints.

Design/methodology/approach

This paper proposes a constrained portfolio optimization model using the SFS approach with risk-budgeting constraints. SFS is an evolutionary method inspired by the natural growth process which has been modeled using the fractal theory. Experimental analysis has been conducted to determine the effectiveness of the proposed model by making comparisons with state-of-the-art from domain such as genetic algorithm, particle swarm optimization, simulated annealing and differential evolution. The real datasets of the Indian stock exchanges and datasets of global stock exchanges such as Nikkei 225, DAX 100, FTSE 100, Hang Seng31 and S&P 100 have been taken in the study.

Findings

The study confirms the better performance of the SFS model among its peers. Also, statistical analysis has been done using SPSS 20 to confirm the hypothesis developed in the experimental analysis.

Originality/value

In the recent past, researchers have already proposed a significant number of models to solve portfolio selection problems using the meta-heuristic approach. However, this is the first attempt to apply the SFS optimization approach to the problem.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Book part
Publication date: 1 January 2008

Dimitris Korobilis

This paper addresses the issue of improving the forecasting performance of vector autoregressions (VARs) when the set of available predictors is inconveniently large to handle…

Abstract

This paper addresses the issue of improving the forecasting performance of vector autoregressions (VARs) when the set of available predictors is inconveniently large to handle with methods and diagnostics used in traditional small-scale models. First, available information from a large dataset is summarized into a considerably smaller set of variables through factors estimated using standard principal components. However, even in the case of reducing the dimension of the data the true number of factors may still be large. For that reason I introduce in my analysis simple and efficient Bayesian model selection methods. Model estimation and selection of predictors is carried out automatically through a stochastic search variable selection (SSVS) algorithm which requires minimal input by the user. I apply these methods to forecast 8 main U.S. macroeconomic variables using 124 potential predictors. I find improved out-of-sample fit in high-dimensional specifications that would otherwise suffer from the proliferation of parameters.

Details

Bayesian Econometrics
Type: Book
ISBN: 978-1-84855-308-8

Article
Publication date: 8 May 2019

Syed Mohd Muneeb, Mohammad Asim Nomani, Malek Masmoudi and Ahmad Yusuf Adhami

Supplier selection problem is the key process in decision making of supply chain management. An effective selection of vendors is heavily responsible for the success of any…

Abstract

Purpose

Supplier selection problem is the key process in decision making of supply chain management. An effective selection of vendors is heavily responsible for the success of any organization. Vendor selection problem (VSP) reflects a more practical view when the decision makers involved in the problem are present on different levels. Moreover, vendor selection consists of various random parameters to be dealt with in real life. The purpose of this paper is to present a decentralized bi-level VSP where demand and supply are normal random variables and objectives are fuzzy in nature. Decision makers are present at two levels and are called as leader and follower. As the next purpose, this paper extends and presents a solution approach for fuzzy bi-level multi-objective decision-making model with stochastic constraints. Different scenarios have been developed within a real-life case study based on different sets of controlling factors under the control of leader.

Design/methodology/approach

This study uses chance-constrained programming and fuzzy set theory to generate the results. Stochastic constraints are converted into deterministic constraints using chance-constrained programming. Decision variables in the bi-level VSP are partitioned between the two levels and considered as controlling factors. Membership functions based on fuzzy set theory are created for the goals and controlling factors and are used to obtain the overall satisfactory solutions. The model is tested on a real-life case study of a textile industry and different scenarios are constructed based on the choice of leader’s controlling factors.

Findings

Results showed that the approach is quite helpful as it generates efficient results producing a good level of satisfaction for the decision makers of both the levels. Results showed that on choosing the vendors that are associated with worst values in terms of associated costs, vendor ratings and quota flexibilities as controlling factors by the leaders, the level of satisfaction achieved is highest. The level of satisfaction of solution is lowest for the scenario when the leader chooses to control the decision variables associated with vendors that are profiled with minimum vendor ratings. Results also showed that higher availability of materials and budget with vendors proved helpful in obtaining quota allocations. Different scenarios generate different results along with different values of satisfaction degrees and objective values which shows the flexible feature of the approach based on leader’s choice of controlling factors. Numerical results showed that the leader’s control can be effectively incorporated maintaining satisfaction levels of the followers under various scenarios or conditions.

Research limitations/implications

The paper makes a certain contribution toward the study of vendor selection existing in a hierarchical manner under uncertain environment. A wide set of data of different factors is needed which can be seen as a limitation when the available time is short for the supplier selection process.

Practical implications

VSP which is generally adopted by most of the large organizations is characterized with hierarchical decision making. Moreover, dealing with the real-life concern, the data available for some of the parameters are not complete, representing an uncertainty of parameters. This study is quite helpful for decentralized VSP under uncertain environment to reduce the costs, improve profit margins and to create long-term relationships with selected vendors. The proposed model also provides an avenue to explore the decision making when the leader has control over some of the decision variables.

Originality/value

Reviewing the literature available, this is the first attempt to present a multi-objective VSP where the decision makers are at hierarchical levels considering uncertain parameters such as demand and supply as per the best knowledge of authors. This research further provides an approach to construct scenarios or different cases based on the choice of leader’s choice of controlling factors.

Article
Publication date: 28 March 2023

Mohammad Akhtar, Angappa Gunasekaran and Yasanur Kayikci

The decision-making to outsource and select the most suitable global manufacturing outsourcing partner (MOP) is complex and uncertain due to multiple conflicting qualitative and…

Abstract

Purpose

The decision-making to outsource and select the most suitable global manufacturing outsourcing partner (MOP) is complex and uncertain due to multiple conflicting qualitative and quantitative criteria as well as multiple alternatives. Vagueness and variability exist in ratings of criteria and alternatives by group of decision-makers (DMs). The paper provides a novel Stochastic Fuzzy (SF) method for evaluation and selection of agile and sustainable global MOP in uncertain and volatile business environment.

Design/methodology/approach

Four main selection criteria for global MOP selection were identified such as economic, agile, environmental and social criteria. Total 16 sub-criteria were selected. To consider the vagueness and variability in ratings by group of DMs, SF method using t-distribution or z-distribution was adopted. The criteria weights were determined using the Stochastic Fuzzy-CRiteria Importance Through Intercriteria Correlation (SF-CRITIC), while MOP selection was carried out using Stochastic Fuzzy-VIseKriterijumskaOptimizacija I KompromisnoResenje (SF-VIKOR) in the case study of footwear industry. Sensitivity analysis was performed to test the robustness of the proposed model. A comparative analysis of SF-VIKOR and VIKOR was made.

Findings

The worker’s wages and welfare, product price, product quality, green manufacturing process and collaboration with partners are the most important criteria for MOP selection. The MOP3 was found to be the best agile and sustainable global MOP for the footwear company. In sensitivity analysis, significance level is found to have important role in MOP ranking. Hence, the study concluded that integrated SF-CRITIC and SF-VIKOR is an improved method for MOP selection problem.

Research limitations/implications

In a group decision-making, ambiguity, impreciseness and variability are found in relative ratings. Fuzzy variant Multi-Criteria Decision-Making methods cover impreciseness in ratings but not the variability. On the other hand, deterministic models do not cover either. Hence, the stochastic method based on the probability theory combining fuzzy theory is proposed to deal with decision-making problems in imprecise and uncertain environments. Most notably, the proposed model has novelty as it captures and reveals both the stochastic perspective and the fuzziness perspective in rating by group of DMs.

Practical implications

The proposed multi-criteria group decision-making model contributes to the sustainable and agile footwear supply chain management and will help the policymakers in selecting the best global MOP.

Originality/value

To the best of the authors’ knowledge, SF method has not been used to select MOP in the existing literature. For the first time, integrated SF-CRITIC and SF-VIKOR method were applied to select the best agile and sustainable MOP under uncertainty. Unlike other studies, this study considered agile criteria along with triple bottom line sustainable criteria for MOP selection. The novel method of SF assessment contributes to the literature and put forward the managerial implication for improving agility and sustainability of global manufacturing outsourcing in footwear industry.

Details

Journal of Enterprise Information Management, vol. 36 no. 4
Type: Research Article
ISSN: 1741-0398

Keywords

Open Access
Article
Publication date: 5 August 2024

James Christopher Westland and Jian Mou

Internet search is a $120bn business that answers lists of search terms or keywords with relevant links to Internet webpages. Only a few companies have sufficient scale to compete…

Abstract

Purpose

Internet search is a $120bn business that answers lists of search terms or keywords with relevant links to Internet webpages. Only a few companies have sufficient scale to compete and thus economics of the process are paramount. This study aims to develop a detailed industry-specific modeling of the economics of internet search.

Design/methodology/approach

The current research develops a stochastic model of the process of Internet indexing, search and retrieval in order to predict expected costs and revenues of particular configurations and usages.

Findings

The models define behavior and economics of parameters that are not directly observable, where it is difficult to empirically determine the distributions and economics.

Originality/value

The model may be used to guide the economics of large search engine operations, including the advertising platforms that depend on them and largely fund them.

Details

Journal of Electronic Business & Digital Economics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-4214

Keywords

Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Content available
Article
Publication date: 15 December 2017

Maxim A. Dulebenets

The volumes of international containerized trade substantially increased over the past years. In the meantime, marine container terminal (MCT) operators are facing congestion…

1192

Abstract

Purpose

The volumes of international containerized trade substantially increased over the past years. In the meantime, marine container terminal (MCT) operators are facing congestion issues at their terminals because of the increasing number of large-size vessels, the lack of innovative technologies and advanced handling equipment and the inability of proper scheduling of the available resources. This study aims to propose a novel memetic algorithm with a deterministic parameter control to facilitate the berth scheduling at MCTs and minimize the total vessel service cost.

Design/methodology/approach

A local search heuristic, which is based on the first-come-first-served policy, is applied at the chromosomes and population initialization stage within the developed memetic algorithm (MA). The deterministic parameter control strategy is implemented for a custom mutation operator, which alters the mutation rate values based on the piecewise function throughout the evolution of the algorithm. Performance of the proposed MA is compared with that of the alternative solution algorithms widely used in the berth scheduling literature, including a MA that does not apply the deterministic parameter control strategy, typical evolutionary algorithm, simulated annealing and variable neighborhood search.

Findings

Results demonstrate that the developed MA with a deterministic parameter control can obtain superior berth schedules in terms of the total vessel service cost within a reasonable computational time. Furthermore, greater cost savings are observed for the cases with high demand and low berthing capacity at the terminal. A comprehensive analysis of the convergence patterns indicates that introduction of the custom mutation operator with a deterministic control for the mutation rate value would provide more efficient exploration and exploitation of the search space.

Research limitations/implications

This study does not account for uncertainty in vessel arrivals. Furthermore, potential changes in the vessel handling times owing to terminal disruptions are not captured.

Practical implications

The developed solution algorithm can serve as an efficient planning tool for MCT operators and assist with efficient berth scheduling for both discrete and continuous berthing layout cases.

Originality/value

The majority of studies on berth scheduling rely on the stochastic search algorithms without considering the specific problem properties and applying the guided search heuristics. Unlike canonical evolutionary algorithms, the developed algorithm uses a local search heuristic for the chromosomes and population initialization and adjusts the mutation rate values based on a deterministic parameter control strategy for more efficient exploration and exploitation of the search space.

Details

Maritime Business Review, vol. 2 no. 4
Type: Research Article
ISSN: 2397-3757

Keywords

Article
Publication date: 17 September 2018

Mohammad Khalilzadeh and Hadis Derikvand

Globalization of markets and pace of technological change have caused the growing importance of paying attention to supplier selection problem. Therefore, this study aims to…

Abstract

Purpose

Globalization of markets and pace of technological change have caused the growing importance of paying attention to supplier selection problem. Therefore, this study aims to choose the best suppliers by providing a mathematical model for the supplier selection problem considering the green factors and stochastic parameters. This paper aims to propose a multi-objective model to identify optimal suppliers for a green supply chain network under uncertainty.

Design/methodology/approach

The objective of this model is to select suppliers considering total cost, total quality parts and total greenhouse gas emissions. Also, uncertainty is tackled by stochastic programming, and the multi-objective model is solved as a single-objective model by the LP-metric method.

Findings

Twelve numerical examples are provided, and a sensitivity analysis is conducted to demonstrate the effectiveness of the developed mathematical model. Results indicate that with increasing market numbers and final product numbers, the total objective function value and run time increase. In case that decision-makers are willing to deal with uncertainty with higher reliability, they should consider whole environmental conditions as input parameters. Therefore, when the number of scenarios increases, the total objective function value increases. Besides, the trade-off between cost function and other objective functions is studied. Also, the benefit of the stochastic programming approach is proved. To show the applicability of the proposed model, different modes are defined and compared with the proposed model, and the results demonstrate that the increasing use of recyclable parts and application of the recycling strategy yield more economic savings and less costs.

Originality/value

This paper aims to present a more comprehensive model based on real-world conditions for the supplier selection problem in green supply chain under uncertainty. In addition to economic issue, environmental issue is considered from different aspects such as selecting the environment-friendly suppliers, purchasing from them and taking the probability of defective finished products and goods from suppliers into account.

Details

Journal of Modelling in Management, vol. 13 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

1 – 10 of over 3000