Search results

1 – 10 of 75
Article
Publication date: 28 May 2024

Xiaohu Wen, Xiangkang Cao, Xiao-ze Ma, Zefan Zhang and Zehua Dong

The purpose of this paper was to prepare a ternary hierarchical rough particle to accelerate the anti-corrosive design for coastal concrete infrastructures.

Abstract

Purpose

The purpose of this paper was to prepare a ternary hierarchical rough particle to accelerate the anti-corrosive design for coastal concrete infrastructures.

Design/methodology/approach

A kind of micro-nano hydrophobic ternary microparticles was fabricated from SiO2/halloysite nanotubes (HNTs) and recycled concrete powders (RCPs), which was then mixed with sodium silicate and silane to form an inorganic slurry. The slurry was further sprayed on the concrete surface to construct a superhydrophobic coating (SHC). Transmission electron microscopy and energy-dispersive X-ray spectroscopy mappings demonstrate that the nano-sized SiO2 has been grafted on the sub-micron HNTs and then further adhered to the surface of micro-sized RCP, forming a kind of superhydrophobic particles (SiO2/HNTs@RCP) featured of abundant micro-nano hierarchical structures.

Findings

The SHC surface presents excellent superhydrophobicity with the water contact angle >156°. Electrochemical tests indicate that the corrosion rate of mild steel rebar in coated concrete reduces three-order magnitudes relative to the uncoated one in 3.5% NaCl solution. Water uptake and chloride ion (Cl-) diffusion tests show that the SHC exhibits high H2O and Cl- ions barrier properties thanks to the pore-sealing and water-repellence properties of SiO2/HNTs@RCP particles. Furthermore, the SHC possesses considerable mechanical durability and outstanding self-cleaning ability.

Originality/value

SHC inhibits water uptake, Cl- diffusion and rebar corrosion of concrete, which will promote the sustainable application of concrete waste in anti-corrosive concrete projects.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 June 2024

Sarfo Mensah, Collins Ameyaw and William Appiah Yeboah

The lack of carbon emission reduction strategies specifically devised for buildings in urban areas in developing countries has affected the global course of tackling carbon…

Abstract

Purpose

The lack of carbon emission reduction strategies specifically devised for buildings in urban areas in developing countries has affected the global course of tackling carbon emissions. The purpose of this study is to identify the causes of carbon emissions from buildings in urban settings in Ghana and generate specific reduction strategies.

Design/methodology/approach

The study was conducted with reference to Kumasi Metropolis, an urban area in Ghana. Adopting a survey research design, data obtained from 106 built environment professionals (BEP) were analyzed using Garrett’s mean ranking and factor analysis (FA) techniques.

Findings

Urban buildings’ carbon emissions in the study area are attributable to construction, demolition energy consumption, technological and economic factors. The strategies emerging from the study emphasize organizational and governmental policy and regulatory factors, as well as the adoption of indigenous sustainable materials and technology.

Practical implications

BEPs and construction industry regulatory bodies will have to consider socioeconomic characteristics of a specific location in the development of organizational and localized carbon emission reduction policies.

Social implications

Local authorities who plan economic activities such as trading and associated taxation in urban areas in developing countries should consider the climate change implications of such socioeconomic activities.

Originality/value

This is one of the first studies that has conceived carbon emission causes and reduction strategies within the context of a typical developing country’s urban setting to overcome the pragmatic challenges associated with past carbon emission reduction frameworks.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 4 June 2024

Muhammad Haroon, Raja Bilal Nasar Khan and Anwar Khitab

Present work deals with the partial substitution of cement by waste demolished concrete powder (WDP) for reducing the carbon footprints of concrete.

Abstract

Purpose

Present work deals with the partial substitution of cement by waste demolished concrete powder (WDP) for reducing the carbon footprints of concrete.

Design/methodology/approach

Control specimens and the specimens with 20% WDP as fractional substitute of cement were prepared. The waste powder was thermally activated at 825 °C prior to its use in the mix. The prepared specimens were evaluated in terms of density, workability, mechanical strength, Ultrasonic pulse velocity (UPV) and rebound hammer (RH).

Findings

The results showed that with the substitution, the workability of the mix increased, while the density decreased. A decrement within a 20% limit was found in compressive strength. The UPV and RH results were closely linked to the other results as mentioned above.

Research limitations/implications

The study deals with only M15 concrete and the substitution level of only 20% as a baseline.

Practical implications

The concrete containing 20% WDP is lightweight and more workable. Moreover, its strength at 28 days is 14 MPa, only 1 MPa lesser than the characteristic strength.

Social implications

The WDP can be recycled and the dumping in landfills can be reduced. This is an important effort towards the decarbonation of concrete.

Originality/value

Previous literature indicates that the WDP has been frequently used as a partial replacement of aggregates. However, some traces of secondary hydration were also reported. This work considers the effect of partial substitution of cement by the WDP.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 July 2024

Aneel Manan, Pu Zhang, Shoaib Ahmad and Jawad Ahmad

The purpose of this study is to assess the incorporation of fiber reinforced polymer (FRP) bars in concrete as a reinforcement enhances the corrosion resistance in a concrete…

Abstract

Purpose

The purpose of this study is to assess the incorporation of fiber reinforced polymer (FRP) bars in concrete as a reinforcement enhances the corrosion resistance in a concrete structure. However, FRP bars are not practically used due to a lack of standard codes. Various codes, including ACI-440-17 and CSA S806-12, have been established to provide guidelines for the incorporation of FRP bars in concrete as reinforcement. The application of these codes may result in over-reinforcement. Therefore, this research presents the use of a machine learning approach to predict the accurate flexural strength of the FRP beams with the use of 408 experimental results.

Design/methodology/approach

In this research, the input parameters are the width of the beam, effective depth of the beam, concrete compressive strength, FRP bar elastic modulus and FRP bar tensile strength. Three machine learning algorithms, namely, gene expression programming, multi-expression programming and artificial neural networks, are developed. The accuracy of the developed models was judged by R2, root means squared and mean absolute error. Finally, the study conducts prismatic analysis by considering different parameters. including depth and percentage of bottom reinforcement.

Findings

The artificial neural networks model result is the most accurate prediction (99%), with the lowest root mean squared error (2.66) and lowest mean absolute error (1.38). In addition, the result of SHapley Additive exPlanation analysis depicts that the effective depth and percentage of bottom reinforcement are the most influential parameters of FRP bars reinforced concrete beam. Therefore, the findings recommend that special attention should be given to the effective depth and percentage of bottom reinforcement.

Originality/value

Previous studies revealed that the flexural strength of concrete beams reinforced with FRP bars is significantly influenced by factors such as beam width, effective depth, concrete compressive strength, FRP bars’ elastic modulus and FRP bar tensile strength. Therefore, a substantial database comprising 408 experimental results considered for these parameters was compiled, and a simple and reliable model was proposed. The model developed in this research was compared with traditional codes, and it can be noted that the model developed in this study is much more accurate than the traditional codes.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 March 2024

Shufeng Tang, Yongsheng Kou, Guoqing Zhao, Huijie Zhang, Hong Chang, Xuewei Zhang and Yunhe Zou

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power…

Abstract

Purpose

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power transmission towers.

Design/methodology/approach

A connecting rod type gripper has been designed to achieve stable grasping of angle steel. Before grasping, use coordination between structures to achieve stable docking and grasping. By using the alternating movements of two claws and the middle climbing mechanism, the climbing and obstacle crossing of the angle steel were achieved.

Findings

Through a simple linkage mechanism, a climbing robot has been designed, greatly reducing the overall mass of the robot. It can also carry a load of 1 kg, and the climbing mechanism can perform stable climbing. The maximum step distance of the climbing robot is 543 mm, which can achieve the crossing of angle steel obstacles.

Originality/value

A transmission tower climbing mechanism was proposed by analyzing the working environment. Through the locking ability of the screw nut, stable clamping of the angle steel is achieved, and a pitch mechanism is designed to adjust the posture of the hand claw.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 January 2023

Pravin Hindurao Yadav, Sandeep R. Desai and Dillip Kumar Mohanty

The purpose of this paper is to present investigations on the significant influence of the tube material and fin density on fluid elastic instability and vortex shedding in a…

Abstract

Purpose

The purpose of this paper is to present investigations on the significant influence of the tube material and fin density on fluid elastic instability and vortex shedding in a parallel triangular finned tube array subjected to water cross flow.

Design/methodology/approach

The experiment was conducted on finned tube arrays with a fin height of 6 mm and fin density of 3 fins per inch (fpi) and 9 fpi. A dedicated setup has been developed to examine fluid elastic instability and vortex shedding. Nine parallel triangular tube arrays with a pitch to tube diameter ratio of 1.78 were considered. The plain tube arrays, coarse finned tube arrays and fine finned tube arrays each of steel, copper and aluminium materials were tested. Plain tube arrays were tested to compare the results of the finned tube arrays having an effective tube diameter same as that of the plain tube.

Findings

A significant effect of fin density and tube material with a variable mass damping parameter was observed on the instability threshold. In the parallel triangular finned tube array subjected to water cross flow, a delay in the instability threshold was observed with an increase in fin density. For steel and aluminium tube arrays, the natural frequency is 9.77 Hz and 10.38 Hz, which is close to each other, whereas natural frequency of the copper tubes is 7.40 Hz. The Connors’ stability constant K for steel and aluminium tube arrays is 4.78 and 4.87, respectively, whereas it is 5.76 for copper tube arrays, which increases considerably compared to aluminum and steel tube arrays. The existence of vortex shedding is confirmed by comparing experimental results with Owen’s hypothesis and the Strouhal number and Reynolds number relationship.

Originality/value

This paper’s results contribute to understand the effect of tube materials and fin density on fluid elastic instability threshold of finned tube arrays subjected to water cross flow.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 April 2024

Tassadit Hermime, Abdelghani Seghir and Smail Gabi

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several…

Abstract

Purpose

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several accelerograms.

Design/methodology/approach

Finite element analysis is conducted using the Plaxis 2D software to generate the numerical model of quay wall. The extension of berth 25 at the port of Bejaia, located in northeastern Algeria, represents a case study. Incremental dynamic analyses are carried out to examine variation of the main response parameters under seismic excitations with increasing Peak ground acceleration (PGA) levels. Two global damage indices based on the safety factor and bending moment are introduced to assess the relationship between PGA and the damage levels.

Findings

The results obtained indicate that the sheet pile quay wall can safely withstand seismic loads up to PGAs of 0.35 g and that above 0.45 g, care should be taken with the risk of reaching the ultimate moment capacity of the steel sheet pile. However, for PGAs greater than 0.5 g, it was clearly demonstrated that the excessive deformations with material are likely to occur in the soil layers and in the structural elements.

Originality/value

The main contribution of the present work is a new double seismic damage index for a steel sheet pile supported quay wharf. The numerical modeling is first validated in the static case. Then, the results obtained by performing several incremental dynamic analyses are exploited to evaluate the degradation of the soil safety factor and the seismic capacity of the pile sheet wall. Computed values of the proposed damage indices of the considered quay wharf are a practical helping tool for decision-making regarding the seismic safety of the structure.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

1393

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 July 2024

Long Sun, Chengjie Jin, Xiaodong Tang, Kexin Cao, Songquan Wang and Ningning Hu

The purpose of this paper is to solve the abrupt deterioration of lubricant performance in high-temperature conditions.

Abstract

Purpose

The purpose of this paper is to solve the abrupt deterioration of lubricant performance in high-temperature conditions.

Design/methodology/approach

Three silver pyrazolyl methyl pyridine complexes with different morphologies were synthesized. A four-ball tribometer was used to assess the tribological characteristics as an additive for pentaerythritol oleate both independently and compound with 1-hexyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide.

Findings

The results showed that when silver complexes and ionic liquids (IL) act independently, sheet silver complex 1 and rod silver complex 2 exhibit good lubricating performance; the optimal antifriction concentration of the ILs is 0.25 Wt.%. The tribological results of the compounds additive of ILs and silver complexes indicate that the wear scar diameter of compound 1 decreased by 16.914%, the wear volume reduced by 7.44% and the lubrication effect surpassed that of the two substances individually; rod compound 2 exhibited an antagonistic effect, intensifying wear; compound 3’s lubrication effect fell between that of the two individual components.

Originality/value

The compound of sheet silver complexes and ILs effectively solves the agglomeration problem of micro/nano lubricant additives. When the interface fails, self-repair is completed, improving the stability and antiwear performance of the lubricating oil.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0128

Details

Industrial Lubrication and Tribology, vol. 76 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 June 2024

Dian Wang, Chuanjin Huang, Ning Hu and Qiang Wei

The purpose of this paper is to clarify the influence of low earth orbit space environment on the wear mechanism of TC4 alloy material and crank rocker mechanism.

Abstract

Purpose

The purpose of this paper is to clarify the influence of low earth orbit space environment on the wear mechanism of TC4 alloy material and crank rocker mechanism.

Design/methodology/approach

In this study, friction experiments were carried out on TC4 alloy friction discs and crank rocker mechanisms, both before and after exposure to atomic oxygen and proton irradiation. Nanoindentation, grazing incidence X-ray diffraction (GIXRD), and X-ray photoelectron spectroscopy were employed to systematically characterize alterations in mechanical properties, surface phase, and chemical composition.

Findings

The results show that the wear mechanism of TC4 alloy friction disc is mainly adhesive wear in vacuum environment, while the wear mechanism of crank rocker mechanism includes not only adhesive wear but also abrasive wear. Atomic oxygen exposure leads to the formation of more oxides on the surface of TC4 alloy, which form abrasive particles during the friction process. Proton irradiation will lead to a decrease in fatigue performance and an increase in hardness on the surface of TC4 alloy, thus causing fatigue wear on the surface of TC4 alloy, and more furrows appear on the crank rocker mechanism after proton irradiation. In the three environments, the characteristics of abrasive wear of the crank rocker mechanism are more obvious than those of the TC4 alloy friction disc.

Originality/value

These results highlight the importance of understanding the subtle effects of atomic oxygen and proton irradiation on the wear behavior of TC4 alloy and provide some insights for optimizing its performance in space applications.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2024-0051/

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 75