Search results

1 – 10 of over 11000
Article
Publication date: 1 March 1945

A.R. Weyl

IN a series of articles entitled “Tailless Aircraft and Flying Wings”, concluded last month, the evolution of the tailless aeroplane and the flying wing was treated. The different…

Abstract

IN a series of articles entitled “Tailless Aircraft and Flying Wings”, concluded last month, the evolution of the tailless aeroplane and the flying wing was treated. The different trends of the development were classified, and a short discussion of the difficulties which had been experienced during experimental work given.

Details

Aircraft Engineering and Aerospace Technology, vol. 17 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 1937

J.H. Crowe

THE basic theory of stability has undergone no important modification since the publication of Professor G. H. Bryan's book on Stability in Aviation in 1911. The stability…

Abstract

THE basic theory of stability has undergone no important modification since the publication of Professor G. H. Bryan's book on Stability in Aviation in 1911. The stability equations derived therein serve to‐day with the difference that axes and symbols have now been standardised and with the additional refinement of a non‐dimensional form of the stability equation introduced by H. Glauert. Due to the vastly increased knowledge of aerodrynamic characteristics, however, the stability derivatives are more readily assessable in any particular design case. This applies more particularly to longitudinal stability calculations which may, and indeed often arc, carried through with no wind tunnel tests available apart from a lift and drag curve for the aerofoil section used. There has also been some extension of the use of stability charts for deriving an approximate knowledge of the behaviour of the aeroplane when it receives a disturbance. These charts are exceedingly useful for obtaining periodic time and damping factor, but the assumptions on which they are based should be clearly realized.

Details

Aircraft Engineering and Aerospace Technology, vol. 9 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 April 1945

A.R. Weyl

THE complexity of the problems which are associated with the lateral stability and directional control of tailless aeroplanes was not realized until rather late.

Abstract

THE complexity of the problems which are associated with the lateral stability and directional control of tailless aeroplanes was not realized until rather late.

Details

Aircraft Engineering and Aerospace Technology, vol. 17 no. 4
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 26 August 2020

Anil Kumar Gulivindala, M.V.A. Raju Bahubalendruni, S.S. Vara Prasad Varupala and Sankaranarayanasamy K.

Parallel assembly sequence planning (PASP) reduces the overall assembly effort and time at the product development stage. Methodological difficulties at framework development and…

252

Abstract

Purpose

Parallel assembly sequence planning (PASP) reduces the overall assembly effort and time at the product development stage. Methodological difficulties at framework development and computational issues at their implementation made the PASP complex to achieve. This paper aims to propose a novel stability concept for subassembly detection to minimize the complexities in PASP.

Design/methodology/approach

In this research, a heuristic method is developed to identify, represent and implement the stability predicate to perform subassembly detection and assembly sequence planning (ASP) at the further stages. Stability is organized into static, dynamic, enriched and no stability between the mating assembly parts. The combination of parts that possesses higher fitness is promoted to formulate the final solution about PASP.

Findings

The results obtained by applying the proposed concept on complex configurations revealed that stability predicate plays a dominant role in valid subassembly detection and final sequence generation further.

Originality/value

The value of the presented study lies in the three types of stability conditions and effective integration to existed ASP method. Unlike the existed heuristics in subassembly detection, the proposed concept identifies the parallel subassemblies during ASP.

Article
Publication date: 20 September 2024

Wenqi Zhang, Zhenbao Liu, Xiao Wang and Luyao Wang

To ensure the stability of the flying wing layout unmanned aerial vehicle (UAV) during flight, this paper uses the radial basis function neural network model to analyse the…

Abstract

Purpose

To ensure the stability of the flying wing layout unmanned aerial vehicle (UAV) during flight, this paper uses the radial basis function neural network model to analyse the stability of the aforementioned aircraft.

Design/methodology/approach

This paper uses a linear sliding mode control algorithm to analyse the stability of the UAV's attitude in a level flight state. In addition, a wind-resistant control algorithm based on the estimation of wind disturbance with a radial basis function neural network is proposed. Through the modelling of the flying wing layout UAV, the stability characteristics of a sample UAV are analysed based on the simulation data. The stability characteristics of the sample UAV are analysed based on the simulation data.

Findings

The simulation results indicate that the UAV with a flying wing layout has a short fuselage, no tail with a horizontal stabilising surface and the aerodynamic focus of the fuselage and the centre of gravity is nearby, which is indicative of longitudinal static instability. In addition, the absence of a drogue tail and the reliance on ailerons and a swept-back angle for stability result in a lack of stability in the transverse direction, whereas the presence of stability in the transverse direction is observed.

Originality/value

The analysis of the stability characteristics of the sample aircraft provides the foundation for the subsequent establishment of the control model for the flying wing layout UAV.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 June 1992

P. WRIGGERS and C. CARSTENSEN

Many engineering structures exhibit loss of stability under static and dynamic loading. Due to the significance of these phenomena in engineering design this topic has attracted…

Abstract

Many engineering structures exhibit loss of stability under static and dynamic loading. Due to the significance of these phenomena in engineering design this topic has attracted considerable attention during the last decades. In recent years much effort has been made to devise algorithms within finite element analysis to investigate the static stability behaviour of structures. With these methods stable and unstable paths can be traced, and limit or bifurcation points can be computed efficiently. The associated arc‐length or branch‐switching procedures are today standard tools in existing finite element codes.

Details

Engineering Computations, vol. 9 no. 6
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 February 2022

Tandralee Chetia, Dhayalan Rajaram and Kumaran G. Sreejalekshmi

Flapping-wing vehicles show various advantages as compared to fixed wing vehicles, making flapping-wing vehicles' study necessary in the current scenario. The present study aims…

Abstract

Purpose

Flapping-wing vehicles show various advantages as compared to fixed wing vehicles, making flapping-wing vehicles' study necessary in the current scenario. The present study aims to provide guidelines for fixing geometric parameters for an initial engineering design by a simple aerodynamic and flight dynamic parametric study.

Design/methodology/approach

A mathematical analysis was performed to understand the aerodynamics and flight dynamics of the micro-air vehicle (MAV). Only the forces due to the flapping wing were considered. The flapping motion was considered to be a combination of the pitching and plunging motion. The geometric parameters of the flapping wing were varied and the aerodynamic forces and power were observed. Attempts were then made to understand the flight stability envelope of the MAV in a forward horizontal motion in the vertical plane with similar parametric studies as those conducted in the case of aerodynamics.

Findings

From the aerodynamic study, insights were obtained regarding the interaction of design parameters with the aerodynamics and feasible ranges of values for the parameters were identified. The flapping wing was found to have neutral static stability. The flight dynamic analysis revealed the presence of an unstable oscillatory mode, a stable fast subsidence mode and a neutral mode, in the forward flight of the MAV. The presence of unstable modes highlighted the need for active control to restore the MAV to equilibrium from its unstable state.

Research limitations/implications

The study does not take into account the effects of control surfaces and tail on the aerodynamics and flight dynamics of the MAV. There is also a need to validate the results obtained in the study through experimental means which shall be taken up in the future.

Practical implications

The parametric study helps us to understand the extent of the impact of the design parameters on the aerodynamics and stability of the MAV. The analysis of both aerodynamics and dynamic stability provides a holistic picture for the initial design. The study incorporates complex mathematical equations and simplifies such to understand the aerodynamics and flight stability of the MAV from an engineering perspective.

Originality/value

The study adds to already existing knowledge on the design procedures of a flapping wing.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 4 January 2019

Katarzyna Pobikrowska and Tomasz Goetzendorf-Grabowski

This paper aims to present stability analysis of a small pulsejet-powered airplane. This analysis is a part of a student project dedicated to designing an airplane to test valved…

Abstract

Purpose

This paper aims to present stability analysis of a small pulsejet-powered airplane. This analysis is a part of a student project dedicated to designing an airplane to test valved pulsejet engine in flight conditions.

Design/methodology/approach

The panel method was chosen to compute the airplane’s aerodynamic coefficients and derivatives for various geometry configurations, as it provides accurate results in a short computational time. Also, the program (PANUKL) that was used allows frequent and easy changes of the geometry. The evaluation of dynamic stability was done using another program (SDSA) equipped with means to formulate and solve eigenvalue problem for various flight speeds.

Findings

As a result of calculations, some geometry corrections were established, such as an increase of the vertical stabilizer’s size and a new wing position. Resulting geometry provides satisfactory dynamic and static stability characteristics for all flight speeds. This conclusion was based on criteria given by MIL-F-8785C specifications. This paper presents the results of the first and the final configuration.

Practical implications

The results shown in this paper are necessary for the continuation of the project. The aircraft’s structure was being designed in the same time as the calculations described in this paper proceeded. With a few modifications to make up for the changes of external geometry, the structure will be ready to be built.

Originality/value

The idea to design an airplane specifically to test a pulsejet in flight is a unique one. Most RC pulsejet-powered constructions that can be heard of are modified versions of already existing models. What adds more to the value of the project is that it is being developed only by students. This allows them to learn various aspects of aircraft design and construction on a soon-to-be real object.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 January 2017

Mojtaba Tahani, Mehran Masdari and Ali Bargestan

This paper aims to investigate the aerodynamic characteristics as well as static stability of wing-in-ground effect aircraft. The effect of geometrical characteristics, namely…

Abstract

Purpose

This paper aims to investigate the aerodynamic characteristics as well as static stability of wing-in-ground effect aircraft. The effect of geometrical characteristics, namely, twist angle, dihedral angle, sweep angle and taper ratio are examined.

Design/methodology/approach

A three-dimensional computational fluid dynamic code is developed to investigate the aerodynamic characteristics of the effect. The turbulent model is utilized for characterization of flow over wing surface.

Findings

The numerical results show that the maximum change of the drag coefficient depends on the angle of attack, twist angle and ground clearance, in a decreasing order. Also, it is found that the lift coefficient increases as the ground clearance, twist angle and dihedral angle decrease. On the other hand, the sweep angle does not have a significant effect on the lift coefficient for the considered wing section and Reynolds number. Also, as the aerodynamic characteristics increase, the taper ratio befits in trailing state.

Practical implications

To design an aircraft, the effect of each design parameter needs to be estimated. For this purpose, the sensitivity analysis is used. In this paper, the influence of all parameter against each other including ground clearance, angle of attack, twist angle, dihedral angle and sweep angle for the NACA 6409 are investigated.

Originality/value

As a summary, the contribution of this paper is to predict the aerodynamic performance for the cruise condition. In this study, the sensitivity of the design parameter on aerodynamic performance can be estimated and the effect of geometrical characteristics has been investigated in detail. Also, the best lift to drag coefficient for the NACA 6409 wing section specifies and two types of taper ratios in ground effect are compared.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 August 1945

G.W. Drury

CASTORING stability requires automatic return, after displacement, of the castoring wheel to the central position. A hinged wheel may be automatically stable under static…

Abstract

CASTORING stability requires automatic return, after displacement, of the castoring wheel to the central position. A hinged wheel may be automatically stable under static conditions, but dynamically unstable, or vice versa. Dynamic stability may be defined as the condition in which the forces on the wheel in motion secure its return to the path of direction of motion.

Details

Aircraft Engineering and Aerospace Technology, vol. 17 no. 8
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 11000