Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 18 April 2024

Changhai Tian and Shoushuai Zhang

The design goal for the tracking interval of high-speed railway trains in China is 3 min, but it is difficult to achieve, and it is widely believed that it is mainly limited by…

Abstract

Purpose

The design goal for the tracking interval of high-speed railway trains in China is 3 min, but it is difficult to achieve, and it is widely believed that it is mainly limited by the tracking interval of train arrivals. If the train arrival tracking interval can be compressed, it will be beneficial for China's high-speed railway to achieve a 3-min train tracking interval. The goal of this article is to study how to compress the train arrival tracking interval.

Design/methodology/approach

By simulating the process of dense train groups arriving at the station and stopping, the headway between train arrivals at the station was calculated, and the pattern of train arrival headway was obtained, changing the traditional understanding that the train arrival headway is considered the main factor limiting the headway of trains.

Findings

When the running speed of trains is high, the headway between trains is short, the length of the station approach throat area is considerable and frequent train arrivals at the station, the arrival headway for the first group or several groups of trains will exceed the headway, but the subsequent sets of trains will have a headway equal to the arrival headway. This convergence characteristic is obtained by appropriately increasing the running time.

Originality/value

According to this pattern, there is no need to overly emphasize the impact of train arrival headway on the headway. This plays an important role in compressing train headway and improving high-speed railway capacity.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 2 May 2024

Lingfei Zhang, Longfeng Hou and Yihao Tao

Water jet propulsion is widely used in various military and civilian fields due to its advantages of simple structure and high propulsion efficiency. The process of mooring…

Abstract

Purpose

Water jet propulsion is widely used in various military and civilian fields due to its advantages of simple structure and high propulsion efficiency. The process of mooring involves utilizing specially designed equipment to secure a ship at a designated berth. During the process of water jet propulsion, the single propeller operates within a complex and turbulent three-dimensional flow. Hence, studying the coupling between the water jet propeller and the hull is critical to comprehending the characteristics of the device and the distribution of the flow field in detail.

Design/methodology/approach

Firstly, we conducted computational fluid dynamics (CFD)-based self-propulsion calculations to evaluate the interaction between the hull and the propeller. We subsequently analyzed the propeller's performance and the forces acting on the hull to understand how the presence or absence of the hull influenced the water jet propeller. Finally, we performed calculations and analysis of the cavitation characteristics of the coupling between the hull and the water jet propeller, considering different rotational speeds and water depths at the bottom of the pool.

Findings

The study demonstrated that the presence of the hull boundary layer under the hull-propeller coupling condition led to reduced uniformity of propeller inlet flow and lower efficiency of the propulsion pump. However, it also increased the bias toward low-flow conditions. Additionally, increasing the impeller speed led to a gradual increase in the cavitation volume within the water jet propeller, resulting in a gradual decrease in the propeller's performance.

Originality/value

This research provides the technical support required for effective design and operation of water jet propulsion systems. This paper involves studying and analyzing the performance and flow field of the coupling between the hull and propeller under mooring conditions with a specified hull model.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 April 2024

Shifang Zhao and Shu Yu

In recent decades, emerging market multinational enterprises (EMNEs) have predominantly adopted a big step internationalization strategy to expand their business overseas. This…

Abstract

Purpose

In recent decades, emerging market multinational enterprises (EMNEs) have predominantly adopted a big step internationalization strategy to expand their business overseas. This study aims to examine the effect of big step internationalization on the speed of subsequent foreign direct investment (FDI) expansion for EMNEs. The authors also investigate the potential boundary conditions.

Design/methodology/approach

The authors use the random effects generalized least squares (GLS) regression following a hierarchical approach to analyze the panel data set conducted by a sample of publicly listed Chinese firms from 2001 to 2012.

Findings

The findings indicate that implementing big step internationalization in the initial stages accelerates the speed of subsequent FDI expansion. Notably, the authors find that this effect is more pronounced for firms that opt for acquisitions as the entry mode in their first big step internationalization and possess a board of directors with strong political connections to their home country’s government. In contrast, the board of director’s international experience negatively moderates this effect.

Practical implications

This study provides insights into our scholarly and practical understanding of EMNEs’ big step internationalization and subsequent FDI expansion speed, which offers important implications for firms’ decision-makers and policymakers.

Originality/value

This study extends the internationalization theory, broadens the international business literature on the consequences of big step internationalization and deepens the theoretical and practical understanding of foreign expansion strategies in EMNEs.

Details

Chinese Management Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-614X

Keywords

Article
Publication date: 26 February 2024

Xiaoyuan Li

The purpose of this study is to investigate the impact of rapid internationalization by emerging-market multinational enterprises (EMNEs) on their innovation performance. It also…

Abstract

Purpose

The purpose of this study is to investigate the impact of rapid internationalization by emerging-market multinational enterprises (EMNEs) on their innovation performance. It also seeks to identify any potential moderating factors that could influence this relationship.

Design/methodology/approach

By analyzing data from listed Chinese MNEs from 2012 to 2022, this study applies a negative binomial regression model to test the research hypotheses.

Findings

This study uncovers an inverted U-shaped relationship between the internationalization speed of EMNEs and their innovation performance. It also suggests that strong absorptive, learning and managerial capacities could play positive moderating roles in the effect of internationalization speed on EMNEs’ innovation performance.

Originality/value

This study highlights rapid global expansion, promoting new knowledge acquisition for EMNEs. However, due to time-compression dilemmas with limited EMNE firm-specific advantages, overly accelerated internationalization hinders learning effectiveness. Additionally, this study reveals the critical importance of three firm-specific capacities in EMNEs – absorptive, learning and managerial capacities – in efficiently assimilating newly acquired knowledge from foreign markets and enhancing their innovation performance through rapid internationalization.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 20 December 2023

Indira Damarla, Venmathi M., Krishnakumar V. and Anbarasan P.

In this paper, a new front end converter (FEC) topology has been proposed for the switched reluctance (SR) motor drive. This study aims to present the performance analysis of…

Abstract

Purpose

In this paper, a new front end converter (FEC) topology has been proposed for the switched reluctance (SR) motor drive. This study aims to present the performance analysis of FEC-based SR motor drive using various types of control schemes like conventional proportional integral (PI) controller, fuzzy logic controller (FLC) and fuzzy-tuned proportional integral controller (Fuzzy-PI).

Design/methodology/approach

The proposed FEC-based SR motor drive with various control strategies is derived for the torque ripple minimization and speed control.

Findings

The steady state and the dynamic response of the FEC-based SR motor drive are analyzed using three different controllers under change in speed and loading conditions. The Fuzzy-PI-based control scheme improves the dynamic response of the system when compared with the FLC and the conventional PI controller.

Originality/value

The hardware prototype has been implemented for the FEC-based SR motor drive by using the Xilinx SPARTAN 6 FPGA processor. The experimental verification has been conducted and the results have been measured under steady state and dynamic conditions.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 30 April 2024

Jacqueline Humphries, Pepijn Van de Ven, Nehal Amer, Nitin Nandeshwar and Alan Ryan

Maintaining the safety of the human is a major concern in factories where humans co-exist with robots and other physical tools. Typically, the area around the robots is monitored…

Abstract

Purpose

Maintaining the safety of the human is a major concern in factories where humans co-exist with robots and other physical tools. Typically, the area around the robots is monitored using lasers. However, lasers cannot distinguish between human and non-human objects in the robot’s path. Stopping or slowing down the robot when non-human objects approach is unproductive. This research contribution addresses that inefficiency by showing how computer-vision techniques can be used instead of lasers which improve up-time of the robot.

Design/methodology/approach

A computer-vision safety system is presented. Image segmentation, 3D point clouds, face recognition, hand gesture recognition, speed and trajectory tracking and a digital twin are used. Using speed and separation, the robot’s speed is controlled based on the nearest location of humans accurate to their body shape. The computer-vision safety system is compared to a traditional laser measure. The system is evaluated in a controlled test, and in the field.

Findings

Computer-vision and lasers are shown to be equivalent by a measure of relationship and measure of agreement. R2 is given as 0.999983. The two methods are systematically producing similar results, as the bias is close to zero, at 0.060 mm. Using Bland–Altman analysis, 95% of the differences lie within the limits of maximum acceptable differences.

Originality/value

In this paper an original model for future computer-vision safety systems is described which is equivalent to existing laser systems, identifies and adapts to particular humans and reduces the need to slow and stop systems thereby improving efficiency. The implication is that computer-vision can be used to substitute lasers and permit adaptive robotic control in human–robot collaboration systems.

Details

Technological Sustainability, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-1312

Keywords

Article
Publication date: 27 March 2024

Yan Zhou and Chuanxu Wang

Disruptions at ports may destroy the planned ship schedules profoundly, which is an imperative operation problem that shipping companies need to overcome. This paper attempts to…

Abstract

Purpose

Disruptions at ports may destroy the planned ship schedules profoundly, which is an imperative operation problem that shipping companies need to overcome. This paper attempts to help shipping companies cope with port disruptions through recovery scheduling.

Design/methodology/approach

This paper studies the ship coping strategies for the port disruptions caused by severe weather. A novel mixed-integer nonlinear programming model is proposed to solve the ship schedule recovery problem (SSRP). A distributionally robust mean conditional value-at-risk (CVaR) optimization model was constructed to handle the SSRP with port disruption uncertainties, for which we derive tractable counterparts under the polyhedral ambiguity sets.

Findings

The results show that the size of ambiguity set, confidence level and risk-aversion parameter can significantly affect the optimal values, decision-makers should choose a reasonable parameter combination. Besides, sailing speed adjustment and handling rate adjustment are effective strategies in SSRP but may not be sufficient to recover the schedule; therefore, port skipping and swapping are necessary when multiple or longer disruptions occur at ports.

Originality/value

Since the port disruption is difficult to forecast, we attempt to take the uncertainties into account to achieve more meaningful results. To the best of our knowledge, there is barely a research study focusing on the uncertain port disruptions in the SSRP. Moreover, this is the first paper that applies distributionally robust optimization (DRO) to deal with uncertain port disruptions through the equivalent counterpart of DRO with polyhedral ambiguity set, in which a robust mean-CVaR optimization formulation is adopted as the objective function for a trade-off between the expected total costs and the risk.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 30 April 2024

Jinsong Zhang, Xinlong Wang, Chen Yang, Mingkang Sun and Zhenwei Huang

This study aims to investigate the noise-inducing characteristics during the start-up process of a mixed-flow pump and the impact of different start-up schemes on pump noise.

Abstract

Purpose

This study aims to investigate the noise-inducing characteristics during the start-up process of a mixed-flow pump and the impact of different start-up schemes on pump noise.

Design/methodology/approach

This study conducted numerical simulations on the mixed-flow pump under different start-up schemes and investigated the flow characteristics and noise distribution under these schemes.

Findings

The results reveal that the dipole noise is mainly caused by pressure fluctuations, while the quadrupole noise is mainly generated by the generation, development and breakdown of vortices. Additionally, the noise evolution characteristics during the start-up process of the mixed-flow pump can be divided into the initial stage, stable growth stage, impulse stage and stable operation stage.

Originality/value

The findings of this study can provide a theoretical basis for the selection of start-up schemes for mixed-flow pumps, reducing flow noise and improving the operational stability of mixed-flow pumps.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 2 May 2024

Sri Viknesh Permalu and Karthigesu Nagarajoo

In an increasingly interconnected world, transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness. High-speed rail (HSR)…

259

Abstract

Purpose

In an increasingly interconnected world, transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness. High-speed rail (HSR), characterized by its exceptional speed and efficiency, has garnered widespread attention as a transformative mode of transportation that transcends borders and fosters economic development. The Kuala Lumpur – Singapore (KL-SG) HSR project stands as a prominent exemplar of this paradigm, symbolizing the potential of HSR to serve as a catalyst for national economic advancement.

Design/methodology/approach

This paper is prepared to provide an insight into the benefits and advantages of HSR based on proven case studies and references from global HSRs, including China, Spain, France and Japan.

Findings

The findings that have been obtained focus on enhanced connectivity and accessibility, attracting foreign direct investment, revitalizing regional economies, urban development and city regeneration, boosting tourism and cultural exchange, human capital development, regional integration and environmental and sustainability benefits.

Originality/value

The KL-SG HSR, linking Kuala Lumpur and Singapore, epitomizes the potential for HSR to be a transformative agent in the realm of economic development. This project encapsulates the aspirations of two dynamic Southeast Asian economies, united in their pursuit of sustainable growth, enhanced connectivity and global competitiveness. By scrutinizing the KL-SG High-Speed Rail through the lens of economic benchmarking, a deeper understanding emerges of how such projects can drive progress in areas such as cross-border trade, tourism, urban development and technological innovation.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 30 April 2024

Jungang Wang, Xincheng Bi and Ruina Mo

The electromechanical planetary transmission system has the advantages of high transmission power and fast running speed, which is one of the important development directions in…

Abstract

Purpose

The electromechanical planetary transmission system has the advantages of high transmission power and fast running speed, which is one of the important development directions in the future. However, during the operation of the electromechanical planetary transmission system, friction and other factors will lead to an increase in gear temperature and thermal deformation, which will affect the transmission performance of the system, and it is of great significance to study the influence of the temperature effect on the nonlinear dynamics of the electromechanical planetary system.

Design/methodology/approach

The effects of temperature change, motor speed, time-varying meshing stiffness, meshing damping ratio and error amplitude on the nonlinear dynamic characteristics of electromechanical planetary systems are studied by using bifurcation diagrams, time-domain diagrams, phase diagrams, Poincaré cross-sectional diagrams, spectra, etc.

Findings

The results show that when the temperature rise is less than 70 °C, the system will exhibit chaotic motion. When the motor speed is greater than 900r/min, the system enters a chaotic state. The changes in time-varying meshing stiffness, meshing damping ratio, and error amplitude will also make the system exhibit abundant bifurcation characteristics.

Originality/value

Based on the principle of thermal deformation, taking into account the temperature effect and nonlinear parameters, including time-varying meshing stiffness and tooth side clearance as well as comprehensive errors, a dynamic model of the electromechanical planetary gear system was established.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Access

Year

Last 6 months (1285)

Content type

Earlycite article (1285)
1 – 10 of over 1000