Search results

1 – 10 of 200
Article
Publication date: 14 July 2023

Guozhi Xu, Xican Li and Hong Che

In order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based…

Abstract

Purpose

In order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based on the positive and inverse grey relational degrees.

Design/methodology/approach

Based on 82 soil sample data collected in Daiyue District, Tai'an City, Shandong Province, firstly, the spectral data of soil samples are transformed by the first order differential and logarithmic reciprocal first order differential and so on, the correlation coefficients between the transformed spectral data and soil organic matter content are calculated, and the estimation factors are selected according to the principle of maximum correlation. Secondly, the positive and inverse grey relational degree model is used to identify the samples to be identified, and the initial estimated values of the organic matter content are obtained. Finally, based on the difference information between the samples to be identified and their corresponding known patterns, a modified model for the initial estimation of soil organic matter content is established, and the estimation accuracy of the model is evaluated using the mean relative error and the determination coefficient.

Findings

The results show that the methods of logarithmic reciprocal first order differential and the first-order differential of the square root for transforming the original spectral data are more effective, which could significantly improve the correlation between soil organic matter content and spectral data. The modified model for hyperspectral estimation of soil organic matter has high estimation accuracy, the average relative error (MRE) of 11 test samples is 4.091%, and the determination coefficient (R2) is 0.936. The estimation precision is higher than that of linear regression model, BP neural network and support vector machine model. The application examples show that the modified model for hyperspectral estimation of soil organic matter content based on positive and inverse grey relational degree proposed in this article is feasible and effective.

Social implications

The model in this paper has clear mathematical and physics meaning, simple calculation and easy programming. The model not only fully excavates and utilizes the internal information of known pattern samples with “insufficient and incomplete information”, but also effectively overcomes the randomness and grey uncertainty in the spectral estimation of soil organic matter. The research results not only enrich the grey system theory and methods, but also provide a new approach for hyperspectral estimation of soil properties such as soil organic matter content, water content and so on.

Originality/value

The paper succeeds in realizing both a modified model for hyperspectral estimation of soil organic matter based on the positive and inverse grey relational degrees and effectively dealing with the randomness and grey uncertainty in spectral estimation.

Details

Grey Systems: Theory and Application, vol. 13 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 26 March 2024

Anuj Kumar Goel and V.N.A. Naikan

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for…

Abstract

Purpose

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for various condition monitoring tasks. Rotating machinery (RM) serves a crucial role in diverse applications, necessitating accurate speed estimation essential for condition monitoring (CM) tasks such as vibration analysis, efficiency evaluation and predictive assessment.

Design/methodology/approach

This research explores the utilization of MEMS embedded in smartphones to economically estimate RM speed. A series of experiments were conducted across three test setups, comparing smartphone-based speed estimation to traditional methods. Rigorous testing spanned various dimensions, including scenarios of limited data availability, diverse speed applications and different smartphone placements on RM surfaces.

Findings

The methodology demonstrated exceptional performance across low and high-speed contexts. Smartphones-MEMS accurately estimated speed regardless of their placement on surfaces like metal and fiber, presenting promising outcomes with a mere 6 RPM maximum error. Statistical analysis, using a two-sample t-test, compared smartphone-derived speed outcomes with those from a tachometer and high-quality (HQ) data acquisition system.

Research limitations/implications

The research limitations include the need for further investigation into smartphone sensor calibration and accuracy in extremely high-speed scenarios. Future research could focus on refining these aspects.

Social implications

The societal impact is substantial, offering cost-effective CM across various industries and encouraging further exploration of MEMS-based vibration monitoring.

Originality/value

This research showcases an innovative approach using smartphone-embedded MEMS for RM speed estimation. The study’s multidimensional testing highlights its originality in addressing scenarios with limited data and varied speed applications.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 15 May 2023

Li Li and Xican Li

In order to make full use of the generalized greyness of interval grey number, this paper analyzes the properties and its applications of generalized greyness.

Abstract

Purpose

In order to make full use of the generalized greyness of interval grey number, this paper analyzes the properties and its applications of generalized greyness.

Design/methodology/approach

Firstly, the static properties of generalized greyness in bounded background domain, infinite background domain and infinitesimal background domain are analyzed. Then, this paper gives the dynamic properties of generalized greyness in bounded background domain, infinite background domain and infinitesimal background domain and explains the dialectical principle contained in it. Finally, the generalized greyness is used to judge the effectiveness of interval grey number transformation.

Findings

The results show that the generalized greyness of interval grey number has relativity, normativity, unity, eternity and conservation. The static and dynamic properties of generalized greyness are the same in the infinite and infinitesimal background domain, while they are different in the bounded background domain. The generalized greyness can be used as an index to judge whether the grey number transformation is greyness or information preservation.

Practical implications

The research shows that the generalized greyness can be used as an index to judge the validity of the grey number transformation and also can be applied in grey evaluation, grey decision-making and grey prediction and so on.

Originality/value

The paper succeeds in realizing the mathematical principle of “white is black”, the “greyness clock-slow effect” of the value domain of interval grey number and the generalized greyness conservation principle, which provides a theoretical basis for the rational use of generalized greyness of interval grey number.

Details

Grey Systems: Theory and Application, vol. 13 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 12 December 2023

Jian Zhou, Shuyu Liu, Jian Lu and Xinyu Liu

The purpose of this paper is to introduce an improved system identification method for small unmanned helicopters combining adaptive ant colony optimization algorithm and Levy’s…

Abstract

Purpose

The purpose of this paper is to introduce an improved system identification method for small unmanned helicopters combining adaptive ant colony optimization algorithm and Levy’s method and to solve the problem of low model prediction accuracy caused by low-frequency domain curve fitting in the small unmanned helicopter frequency domain parameter identification method.

Design/methodology/approach

This method uses the Levy method to obtain the initial parameters of the fitting model, uses the global optimization characteristics of the adaptive ant colony algorithm and the advantages of avoiding the “premature” phenomenon to optimize the initial parameters and finally obtains a small unmanned helicopter through computational optimization Kinetic models under lateral channel and longitudinal channel.

Findings

The algorithm is verified by flight test data. The verification results show that the established dynamic model has high identification accuracy and can accurately reflect the dynamic characteristics of small unmanned helicopter flight.

Originality/value

This paper presents a novel and improved frequency domain identification method for small unmanned helicopters. Compared with the conventional method, this method improves the identification accuracy and reduces the identification error.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 August 2023

Hongwei Zhang, Shihao Wang, Hongmin Mi, Shuai Lu, Le Yao and Zhiqiang Ge

The defect detection problem of color-patterned fabric is still a huge challenge due to the lack of manual defect labeling samples. Recently, many fabric defect detection…

124

Abstract

Purpose

The defect detection problem of color-patterned fabric is still a huge challenge due to the lack of manual defect labeling samples. Recently, many fabric defect detection algorithms based on feature engineering and deep learning have been proposed, but these methods have overdetection or miss-detection problems because they cannot adapt to the complex patterns of color-patterned fabrics. The purpose of this paper is to propose a defect detection framework based on unsupervised adversarial learning for image reconstruction to solve the above problems.

Design/methodology/approach

The proposed framework consists of three parts: a generator, a discriminator and an image postprocessing module. The generator is able to extract the features of the image and then reconstruct the image. The discriminator can supervise the generator to repair defects in the samples to improve the quality of image reconstruction. The multidifference image postprocessing module is used to obtain the final detection results of color-patterned fabric defects.

Findings

The proposed framework is compared with state-of-the-art methods on the public dataset YDFID-1(Yarn-Dyed Fabric Image Dataset-version1). The proposed framework is also validated on several classes in the MvTec AD dataset. The experimental results of various patterns/classes on YDFID-1 and MvTecAD demonstrate the effectiveness and superiority of this method in fabric defect detection.

Originality/value

It provides an automatic defect detection solution that is convenient for engineering applications for the inspection process of the color-patterned fabric manufacturing industry. A public dataset is provided for academia.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 December 2023

Li Zhang and Xican Li

Aim to the limitations of grey relational analysis of interval grey number, based on the generalized greyness of interval grey number, this paper tries to construct a grey angle…

Abstract

Purpose

Aim to the limitations of grey relational analysis of interval grey number, based on the generalized greyness of interval grey number, this paper tries to construct a grey angle cosine relational degree model from the perspective of proximity and similarity.

Design/methodology/approach

Firstly, the algorithms of the generalized greyness of interval grey number and interval grey number vector are given, and its properties are analyzed. Then, based on the grey relational theory, the grey angle cosine relational model is proposed based on the generalized greyness of interval grey number, and the relationship between the classical cosine similarity model and the grey angle cosine relational model is analyzed. Finally, the validity of the model in this paper is illustrated by the calculation examples and an application example of related factor analysis of maize yield.

Findings

The results show that the grey angle cosine relational degree model has strict theoretical basis, convenient calculation and is easy to program, which can not only fully utilize the information of interval grey numbers but also overcome the shortcomings of greyness relational degree model. The grey angle cosine relational degree is an extended form of cosine similarity degree of real numbers. The calculation examples and the related factor analysis of maize yield show that the model proposed in this paper is feasible and valid.

Practical implications

The research results not only further enrich the grey system theory and method but also provide a basis for the grey relational analysis of the sequences in which the interval grey numbers coexist with the real numbers.

Originality/value

The paper succeeds in realizing the algorithms of the generalized greyness of interval grey number and interval grey number vector, and the grey angle cosine relational degree, which provide a new method for grey relational analysis.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 19 April 2024

Oguzhan Ozcelebi, Jose Perez-Montiel and Carles Manera

Might the impact of the financial stress on exchange markets be asymmetric and exposed to regime changes? Departing from the existing literature, highlighting that the domestic…

15

Abstract

Purpose

Might the impact of the financial stress on exchange markets be asymmetric and exposed to regime changes? Departing from the existing literature, highlighting that the domestic and foreign financial stress in terms of money market have substantial effects on exchange market, this paper aims to investigate the impacts of the bond yield spreads of three emerging countries (Mexico, Russia, and South Korea) on their exchange market pressure indices using monthly observations for the period 2010:01–2019:12. Additionally, the paper analyses the impact of bond yield spread of the US on the exchange market pressure indices of the three mentioned emerging countries. The authors hypothesized whether the negative and positive changes in the bond yield spreads have varying effects on exchange market pressure indices.

Design/methodology/approach

To address the research question, we measure the bond yield spread of the selected countries by using the interest rate spread between 10-year and 3-month treasury bills. At the same time, the exchange market pressure index is proxied by the index introduced by Desai et al. (2017). We base the empirical analysis on nonlinear vector autoregression (VAR) models and an asymmetric quantile-based approach.

Findings

The results of the impulse response functions indicate that increases/decreases in the bond yield spreads of Mexico, Russia and South Korea raise/lower their exchange market pressure, and the effects of shocks in the bond yield spreads of the US also lead to depreciation/appreciation pressures in the local currencies of the emerging countries. The quantile connectedness analysis, which allows for the role of regimes, reveals that the weights of the domestic and foreign bond yield spread in explaining variations of exchange market pressure indices are higher when exchange market pressure indices are not in a normal regime, indicating the role of extreme development conditions in the exchange market. The quantile regression model underlines that an increase in the domestic bond yield spread leads to a rise in its exchange market pressure index during all exchange market pressure periods in Mexico, and the relevant effects are valid during periods of high exchange market pressure in Russia. Our results also show that Russia differs from Mexico and South Korea in terms of the factors influencing the demand for domestic currency, and we have demonstrated the role of domestic macroeconomic and financial conditions in surpassing the effects of US financial stress. More specifically, the impacts of the domestic and foreign financial stress vary across regimes and are asymmetric.

Originality/value

This study enriches the literature on factors affecting the exchange market pressure of emerging countries. The results have significant economic implications for policymakers, indicating that the exchange market pressure index may trigger a financial crisis and economic recession.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 27 February 2023

Alper Karasoy

This study aims to examine the effects of industrialization, deindustrialization and financialization on Turkey’s energy insecurity by controlling the impacts of urbanization and…

Abstract

Purpose

This study aims to examine the effects of industrialization, deindustrialization and financialization on Turkey’s energy insecurity by controlling the impacts of urbanization and alternative energy generation for the 1980–2018 period.

Design/methodology/approach

This study proposed an econometric model relying on the literature. Moreover, based on different financialization variables, this study estimated two specifications of this model using the augmented nonlinear autoregressive distributed lag approach.

Findings

The results are as follows: first, industrialization increased Turkey’s long-run energy insecurity, whereas deindustrialization did not affect Turkey’s energy security. Second, urbanization worsened Turkey’s energy insecurity. Third, financialization aggravated Turkey’s energy insecurity. Last, alternative energy generation improved Turkey’s energy security.

Research limitations/implications

This study identifies the energy security’s drivers in Turkey with a focus on industrialization and financialization. Nonetheless, further research is needed on other emerging economies with high energy insecurity levels, and a disaggregated approach can be followed to examine how various industrial sectors impact energy security.

Practical implications

To combat energy insecurity, quantifiable, innovative and energy-efficient goals should be set for Turkey’s industry sector. Additionally, to achieve these goals, financial opportunities should be provided by reforming the financial sector. This reformative approach can also curb financialization’s negative effect on Turkey’s energy security.

Social implications

Deindustrialization is not a solution to Turkey’s energy insecurity. Also, unless necessary actions are taken, industrialization, financialization and uncontrolled urbanization may continue to threaten Turkey’s energy security. Finally, promoting alternative energy generation seems to be a viable long-run solution to energy insecurity.

Originality/value

Although a significant number of studies investigated industrialization’s and financialization’s impacts on energy demand or environmental damage, only a few studies examined their impacts on energy insecurity. Similar to other developing nations, as Turkey is facing chronic energy security problems, the author believes that the analysis provides important policy insights regarding energy (in)security’s drivers. By differentiating the impacts of industrialization and deindustrialization, this study also shows that deindustrialization may not be a proper solution to deal with energy insecurity.

Details

International Journal of Energy Sector Management, vol. 17 no. 6
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 4 April 2023

Alireza Sharifi and Shilan Felegari

The purpose of this study is rangeland biomass estimation and its spatial–temporal dynamics. Remote sensing has been a significant method for estimating biomass in recent years…

Abstract

Purpose

The purpose of this study is rangeland biomass estimation and its spatial–temporal dynamics. Remote sensing has been a significant method for estimating biomass in recent years. The connection between vegetation index and field biomass will be used to assign probabilities, but in some cases, it does not provide acceptable results because of soil background and geographical and temporal variability.

Design/methodology/approach

In this study, the normalized difference red-edge (NDRE) index was used to calculate the rangeland biomass in comparison to five vegetation indices. Field measurements of biomass of natural rangeland in the West of Iran were taken in 2015, 2018 and 2021, and SENTINEL-2 data were used for analysis.

Findings

The results indicated that the overall advantage of NDRE stems from the fact that it adjusts for changes in leaf water content while overcoming the detrimental effects of soil substrate heterogeneity, both of these factors have a significant impact on pasture biomass. These results suggest that an NDRE-based biomass estimation model might be useful for estimating and monitoring biomass in large rangelands with significant geographical and temporal variability.

Originality/value

Identifying the best vegetation index to establish a vegetation-based biomass regression model for rangelands in large areas with different climatic conditions, plant compositions and soil types is the overall aim of this study.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 200