Search results

1 – 10 of 16
Article
Publication date: 29 March 2024

Tugrul Oktay and Yüksel Eraslan

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design…

Abstract

Purpose

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design conducted with optimization, computational fluid dynamics (CFD) and machine learning approaches.

Design/methodology/approach

The main wing of the UAV is redesigned with morphing wingtips capable of dihedral angle alteration by means of folding. Aircraft dynamic model is derived as equations depending only on wingtip dihedral angle via Nonlinear Least Squares regression machine learning algorithm. Data for the regression analyses are obtained by numerical (i.e. CFD) and analytical approaches. Simultaneous perturbation stochastic approximation (SPSA) is incorporated into the design process to determine the optimal wingtip dihedral angle and proportional-integral-derivative (PID) coefficients of the control system that maximizes autonomous flight performance. The performance is defined in terms of trajectory tracking quality parameters of rise time, settling time and overshoot. Obtained optimal design parameters are applied in flight simulations to test both longitudinal and lateral reference trajectory tracking.

Findings

Longitudinal and lateral autonomous flight performances of the UAV are improved by redesigning the main wing with morphing wingtips and simultaneous estimation of PID coefficients and wingtip dihedral angle with SPSA optimization.

Originality/value

This paper originally discusses the simultaneous design of innovative morphing wingtip and UAV flight control system for autonomous flight performance improvement. The proposed simultaneous design idea is conducted with the SPSA optimization and a machine learning algorithm as a novel approach.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 February 2024

Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…

Abstract

Purpose

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.

Design/methodology/approach

Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.

Findings

The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.

Practical implications

The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.

Originality/value

This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 August 2024

Xiaohui Xiong, Jiaxu Geng, Kaiwen Wang and Xinran Wang

This paper aims to investigate the effect of different wing height layouts on the aerodynamic performance and flow structure of high-speed train, in a train-wing coupling method…

Abstract

Purpose

This paper aims to investigate the effect of different wing height layouts on the aerodynamic performance and flow structure of high-speed train, in a train-wing coupling method with multiple tandem wings installed on the train roof.

Design/methodology/approach

The improved delayed detached eddy simulation method based on shear stress transport k- ω turbulence model has been used to conduct computational fluid dynamics simulation on the train with three different wing height layouts, at a Reynolds number of 2.8 × 106. The accuracy of the numerical method has been validated by wind tunnel experiments.

Findings

The wing height layout has a significant effect on the lift, while its influence on the drag is weak. There are three distinctive vortex structures in the flow field: wingtip vortex, train body vortex and pillar vortex, which are influenced by the variation in wing height layout. The incremental wing layout reduces the mixing and merging between vortexes in the flow field, weakening the vorticity and turbulence intensity. This enhances the pressure difference between the upper and lower surfaces of both the train and wings, thereby increasing the overall lift. Simultaneously, it reduces the slipstream velocity at platform and trackside heights.

Originality/value

This paper contributes to understanding the aerodynamic characteristics and flow structure of a high-speed train coupled with wings. It provides a reference for the design aiming to achieve equivalent weight reduction through aerodynamic lift synergy in trains.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 December 2023

Jianbin Luo, Mingsen Li, Ke Mi, Zhida Liang, Xiaofeng Chen, Lei Ye, Yuanhao Tie, Song Xu, Haiguo Zhang, Guiguang Chen and Chunmei Jiang

The purpose of this paper is to study the aerodynamic characteristics of Ahmed body in longitudinal and lateral platoons under crosswind by computational fluid dynamics…

Abstract

Purpose

The purpose of this paper is to study the aerodynamic characteristics of Ahmed body in longitudinal and lateral platoons under crosswind by computational fluid dynamics simulation. It helps to improve the aerodynamic characteristics of vehicles by providing theoretical basis and engineering direction for the development and progress of intelligent transportation.

Design/methodology/approach

A two-car platoon model is used to compare with the experiment to prove the accuracy of the simulation method. The simplified Ahmed body model and the Reynolds Averaged N-S equation method are used to study the aerodynamic characteristics of vehicles at different distances under cross-winds.

Findings

When the longitudinal distance x/L = 0.25, the drag coefficients of the middle and trailing cars at β = 30° are improved by about 272% and 160% compared with β = 10°. The side force coefficients of the middle and trailing cars are increased by 50% and 62%. When the lateral distance y/W = 0.25, the side force coefficients of left and middle cars at β = 30° are reduced by 38% and 37.5% compared with β = 10°. However, the side force coefficient of the right car are increased by about 84.3%.

Originality/value

Most of the researches focus on the overtaking process, and there are few researches on the neat lateral platoon. The innovation of this paper is that in addition to studying the aerodynamic characteristics of longitudinal driving, the aerodynamic characteristics of neat lateral driving are also studied, and crosswind conditions are added. The authors hope to contribute to the development of intelligent transportation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 December 2023

Oskar Szulc, Piotr Doerffer, Pawel Flaszynski and Marianna Braza

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Abstract

Purpose

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Design/methodology/approach

The concept is based on the introduction of a tangentially moving wall upstream of the shock wave and in the interaction region. The SBLI control mechanism may be implemented as a closed belt floating on an air cushion, sliding over two cylinders and forming the outer skin of the suction side of the airfoil. The presented exploratory numerical study is conducted with SPARC solver (steady 2D RANS). The effect of the moving wall is presented for the NACA 0012 airfoil operating in transonic conditions.

Findings

To assess the accuracy of obtained solutions, validation of the computational model is demonstrated against the experimental data of Harris, Ladson & Hill and Mineck & Hartwich (NASA Langley). The comparison is conducted not only for the reference (impermeable) but also for the perforated (permeable) surface NACA 0012 airfoils. Subsequent numerical analysis of SBLI control by moving wall confirms that for the selected velocity ratios, the method is able to improve the shock-upstream boundary layer and counteract flow separation, significantly increasing the airfoil aerodynamic performance.

Originality/value

The moving wall concept as a means of normal shock wave–turbulent boundary layer interaction and shock-induced separation control has been investigated in detail for the first time. The study quantified the necessary operational requirements of such a system and practicable aerodynamic efficiency gains and simultaneously revealed the considerable potential of this promising idea, stimulating a new direction for future investigations regarding SBLI control.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 August 2024

Mohammadsadegh Pahlavanzadeh, Sebastian Rulik, Włodzimierz Wróblewski and Krzysztof Rusin

The performance of a bladeless Tesla turbine is closely tied to momentum diffusion, kinetic energy transfer and wall shear stress generation on its rotating disks. The surface…

Abstract

Purpose

The performance of a bladeless Tesla turbine is closely tied to momentum diffusion, kinetic energy transfer and wall shear stress generation on its rotating disks. The surface roughness adds complexity of flow analysis in such a domain. This paper aims to assess the effect of roughness on flow structures and the application of roughness models in flow cross sections with submillimeter height, including both stationary and rotating walls.

Design/methodology/approach

This research starts with the examination of flow over a rough flat plate, and then proceeds to study flow within minichannels, evaluating the effect of roughness on flow characteristics. An in-house test stand validates the numerical solutions of minichannel. Finally, flow through the minichannel with corotating walls was analyzed. The k-ω SST turbulent model and Aupoix's roughness method are used for numerical simulations.

Findings

The findings emphasize the necessity of considering the constricted dimensions of the flow cross section, thereby improving the alignment of derived results with theoretical estimations. Moreover, this study explores the effects of roughness on flow characteristics within the minichannel with stationary and rotating walls, offering valuable insights into this intricate phenomenon, and depicts the appropriate performance of chosen roughness model in studied cases.

Originality/value

The originality of this investigation is the assessment and validation of flow characteristics inside minichannel with stationary and corotating walls when the roughness is implemented. This phenomenon, along with the effect of roughness on the transportation of kinetic energy to the rough surface of a minichannel in an in-house test setup, is assessed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 August 2023

Samir Ouchene, Arezki Smaili and Hachimi Fellouah

This paper aims to investigate the problem of estimating the angle of attack (AoA) and relative velocity for vertical axis wind turbine (VAWT) blades from computational fluid…

Abstract

Purpose

This paper aims to investigate the problem of estimating the angle of attack (AoA) and relative velocity for vertical axis wind turbine (VAWT) blades from computational fluid dynamics data.

Design/methodology/approach

Two methods are implemented as function objects within the OpenFOAM framework for estimating the blade’s AoA and relative velocity. For the numerical analysis of the flow around and through the VAWT, 2 D unsteady Reynolds-averaged Navier–Stokes (URANS) simulations are carried out and validated against experimental data.

Findings

To gain a better understanding of the complex flow features encountered by VAWT blades, the determination of the AoA is crucial. Relying on the geometrically-derived AoA may lead to wrong conclusions about blade aerodynamics.

Practical implications

This study can lead to the development of more robust optimization techniques for enhancing the variable-pitch control mechanism of VAWT blades and improving low-order models based on the blade element momentum theory.

Originality/value

Assessment of the reliability of AoA and relative velocity estimation methods for VAWT’ blades at low-Reynolds numbers using URANS turbulence models in the context of dynamic stall and blade–vortex interactions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 August 2024

Yuhan Li, Qun Luo, Shiyu Zhao, Wenyan Qi, Zhong Huang and Guiming Mei

The purpose of this paper is to study the aerodynamic characteristics and uplift force tendencies of pantographs within the operational height span of 1,600–2,980 mm, aiming to…

Abstract

Purpose

The purpose of this paper is to study the aerodynamic characteristics and uplift force tendencies of pantographs within the operational height span of 1,600–2,980 mm, aiming to offer valuable insights for research concerning the adaptability of pantograph-catenary systems on double-stack high container transportation lines.

Design/methodology/approach

Eight pantograph models were formulated based on lines with the contact wire of 6,680 mm in height. The aerodynamic calculations were carried out using the SST k-ω separated vortex model. A more improved aerodynamic uplift force method was also presented. The change rule of the aerodynamic uplift force under different working heights of the pantograph was analyzed according to the transfer coefficients of the aerodynamic forces and moments.

Findings

The results show that the absolute values of the aerodynamic forces and moments of the upper and lower frame increase with the working height, whereas those of the collector head do not change. The absolute values of the transfer coefficients of the lower frame and link arm were significantly larger than those of the upper frame. Therefore, the absolute value of the aerodynamic uplift force increased and then decreased with the working height. The maximum value occurred at a working height of 2,400 mm.

Originality/value

A new method for calculating the aerodynamic uplift force of pantographs is proposed. The specifical change rule of the aerodynamic uplift force of the pantograph on double-stack high container transportation lines was determined from the perspective of the transfer coefficients of the aerodynamic forces and moments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 June 2024

Ryley McConkey, Nikhila Kalia, Eugene Yee and Fue-Sang Lien

Industrial simulations of turbulent flows often rely on Reynolds-averaged Navier-Stokes (RANS) turbulence models, which contain numerous closure coefficients that need to be…

Abstract

Purpose

Industrial simulations of turbulent flows often rely on Reynolds-averaged Navier-Stokes (RANS) turbulence models, which contain numerous closure coefficients that need to be calibrated. This paper aims to address this issue by proposing a semi-automated calibration of these coefficients using a new framework (referred to as turbo-RANS) based on Bayesian optimization.

Design/methodology/approach

The authors introduce the generalized error and default coefficient preference (GEDCP) objective function, which can be used with integral, sparse or dense reference data for the purpose of calibrating RANS turbulence closure model coefficients. Then, the authors describe a Bayesian optimization-based algorithm for conducting the calibration of these model coefficients. An in-depth hyperparameter tuning study is conducted to recommend efficient settings for the turbo-RANS optimization procedure.

Findings

The authors demonstrate that the performance of the k-ω shear stress transport (SST) and generalized k-ω (GEKO) turbulence models can be efficiently improved via turbo-RANS, for three example cases: predicting the lift coefficient of an airfoil; predicting the velocity and turbulent kinetic energy fields for a separated flow; and, predicting the wall pressure coefficient distribution for flow through a converging-diverging channel.

Originality/value

To the best of the authors’ knowledge, this work is the first to propose and provide an open-source black-box calibration procedure for turbulence model coefficients based on Bayesian optimization. The authors propose a data-flexible objective function for the calibration target. The open-source implementation of the turbo-RANS framework includes OpenFOAM, Ansys Fluent, STAR-CCM+ and solver-agnostic templates for user application.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 December 2023

Luca Sciacovelli, Aron Cannici, Donatella Passiatore and Paola Cinnella

The purpose of the paper is to analyse the performances of closures and compressibility corrections classically used in turbulence models when applied to highly-compressible…

Abstract

Purpose

The purpose of the paper is to analyse the performances of closures and compressibility corrections classically used in turbulence models when applied to highly-compressible turbulent boundary layers (TBLs) over flat plates.

Design/methodology/approach

A direct numerical simulation (DNS) database of TBLs, covering a wide range of thermodynamic conditions, is presented and exploited to perform a priori analyses of classical and recent closures for turbulent models. The results are systematically compared to the “exact” terms computed from DNS.

Findings

The few compressibility corrections available in the literature are not found to capture DNS data much better than the uncorrected original models, especially at the highest Mach numbers. Turbulent mass and heat fluxes are shown not to follow the classical gradient diffusion model, which was shown instead to provide acceptable results for modelling the vibrational turbulent heat flux.

Originality/value

The main originality of the present paper resides in the DNS database on which the a priori tests are conducted. The database contains some high-enthalpy simulations at large Mach numbers, allowing to test the performances of the turbulence models in the presence of both chemical dissociation and vibrational relaxation processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 16