Search results

1 – 10 of 19
Article
Publication date: 12 September 2023

Yang Zhou, Long Wang, Yongbin Lai and Xiaolong Wang

The coupling process between the loading mechanism and the tank car mouth is a crucial step in the tank car loading process. The purpose of this paper is to design a method to…

Abstract

Purpose

The coupling process between the loading mechanism and the tank car mouth is a crucial step in the tank car loading process. The purpose of this paper is to design a method to accurately measure the pose of the tanker car.

Design/methodology/approach

The collected image is first subjected to a gray enhancement operation, and the black parts of the image are extracted using Otsu’s threshold segmentation and morphological processing. The edge pixels are then filtered to remove outliers and noise, and the remaining effective points are used to fit the contour information of the tank car mouth. Using the successfully extracted contour information, the pose information of the tank car mouth in the camera coordinate system is obtained by establishing a binocular projection elliptical cone model, and the pixel position of the real circle center is obtained through the projection section. Finally, the binocular triangulation method is used to determine the position information of the tank car mouth in space.

Findings

Experimental results have shown that this method for measuring the position and orientation of the tank car mouth is highly accurate and can meet the requirements for industrial loading accuracy.

Originality/value

A method for extracting the contours of various types of complex tanker mouth is proposed. This method can accurately extract the contour of the tanker mouth when the contour is occluded or disturbed. Based on the binocular elliptic conical model and perspective projection theory, an innovative method for measuring the pose of the tanker mouth is proposed, and according to the space characteristics of the tanker mouth itself, the ambiguity of understanding is removed. This provides a new idea for the automatic loading of ash tank cars.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 4 June 2024

Moein Beheshti, Dušan Mladenović, Razieh Sadraei and Ahad ZareRavasan

As exponential technologies continue to transform business models rapidly, there is a growing focus on metaverse research within the tourism industry. Despite the significant…

Abstract

Purpose

As exponential technologies continue to transform business models rapidly, there is a growing focus on metaverse research within the tourism industry. Despite the significant findings, the practical discussion of high-cost and resource-demanding space tourism within the metaverse platform is still abstract. This study aims to provide a comprehensive understanding of virtual space tourism and consumer motivations inspired by the intrinsic principles of the sharing economy business model and the metaverse platforms.

Design/methodology/approach

By gathering primary data through questionnaires from individuals interested in virtual space tourism and using the 530 valid responses, this study uses the unified theory of acceptance and use of technology 2 (UTAUT2) along with the status quo bias theory (SQB) to better comprehend travelers’ motivations for engaging with the metaverse in space tourism.

Findings

The study confirms UTAUT2’s effectiveness in predicting travelers’ adoption behavior. Specifically, factors such as performance expectancy, effort expectancy, social influence, hedonic motivation, price value and facilitating conditions significantly impact attitudes and behavioral intentions toward adopting the metaverse for space tourism. Furthermore, skepticism significantly moderates the relationship between attitudes and behavioral intentions.

Originality/value

This study is one of the first to empirically explore the motivations for using metaverse capabilities in the context of space tourism. In line with recent calls for more research on advancing UN sustainable development goals through the metaverse platform, this research discusses findings based on eight shared attributes in both sharing economies and the metaverse platforms that offer the potential for sustainable, socialized and affordable access to space tourism. In addition to the managerial implications, this study outlines future research directions, drawing on insights from the sharing economy’s success in the tourism industry.

Details

International Journal of Contemporary Hospitality Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 9 July 2024

Zengrui Zheng, Kainan Su, Shifeng Lin, Zhiquan Fu and Chenguang Yang

Visual simultaneous localization and mapping (SLAM) has limitations such as sensitivity to lighting changes and lower measurement accuracy. The effective fusion of information…

Abstract

Purpose

Visual simultaneous localization and mapping (SLAM) has limitations such as sensitivity to lighting changes and lower measurement accuracy. The effective fusion of information from multiple modalities to address these limitations has emerged as a key research focus. This study aims to provide a comprehensive review of the development of vision-based SLAM (including visual SLAM) for navigation and pose estimation, with a specific focus on techniques for integrating multiple modalities.

Design/methodology/approach

This paper initially introduces the mathematical models and framework development of visual SLAM. Subsequently, this paper presents various methods for improving accuracy in visual SLAM by fusing different spatial and semantic features. This paper also examines the research advancements in vision-based SLAM with respect to multi-sensor fusion in both loosely coupled and tightly coupled approaches. Finally, this paper analyzes the limitations of current vision-based SLAM and provides predictions for future advancements.

Findings

The combination of vision-based SLAM and deep learning has significant potential for development. There are advantages and disadvantages to both loosely coupled and tightly coupled approaches in multi-sensor fusion, and the most suitable algorithm should be chosen based on the specific application scenario. In the future, vision-based SLAM is evolving toward better addressing challenges such as resource-limited platforms and long-term mapping.

Originality/value

This review introduces the development of vision-based SLAM and focuses on the advancements in multimodal fusion. It allows readers to quickly understand the progress and current status of research in this field.

Details

Robotic Intelligence and Automation, vol. 44 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 29 July 2024

Weijia Lu, Chengxi Zhang, Fei Liu, Jin Wu, Jihe Wang and Lining Tan

This paper aims to investigate the relative translational control for multiple spacecraft formation flying. This paper proposes an engineering-friendly, structurally simple, fast…

19

Abstract

Purpose

This paper aims to investigate the relative translational control for multiple spacecraft formation flying. This paper proposes an engineering-friendly, structurally simple, fast and model-free control algorithm.

Design/methodology/approach

This paper proposes a tanh-type self-learning control (SLC) approach with variable learning intensity (VLI) to guarantee global convergence of the tracking error. This control algorithm utilizes the controller's previous control information in addition to the current system state information and avoids complicating the control structure.

Findings

The proposed approach is model-free and can obtain the control law without accurate modeling of the spacecraft formation dynamics. The tanh function can tune the magnitude of the learning intensity to reduce the control saturation behavior when the tracking error is large.

Practical implications

This algorithm is model-free, robust to perturbations such as disturbances and system uncertainties, and has a simple structure that is very conducive to engineering applications.

Originality/value

This paper verified the control performance of the proposed algorithm for spacecraft formation in the presence of disturbances by simulation and achieved high steady-state accuracy and response speed over comparisons.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 July 2023

Robyn King, David Smith and Grace Williams

The paper’s purpose is to consider, using a transaction cost economics (TCE) framework, the mechanisms used by space agencies to encourage private investment in the commercial…

Abstract

Purpose

The paper’s purpose is to consider, using a transaction cost economics (TCE) framework, the mechanisms used by space agencies to encourage private investment in the commercial spaceflight sector.

Design/methodology/approach

The authors conducted a content analysis of 554 pages of news articles, relating to issues pertaining to partnerships between national government-based space agencies and private space travel providers, published over a 20-year period. Leximancer was used to initially screen the data and then the authors manually analysed the content to identify themes.

Findings

The data analysis revealed three themes, relating to: the uncertainty of space travel; National Aeronautics and Space Administration (NASA) stimulating innovation in the private sector; and risk, insurance and regulation. These themes informed by TCE reveal the “hierarchical” organisational forms used to achieve human spaceflight and then the “hybrids”, insurance and regulations used to stimulate private sector investment and innovation.

Originality/value

This paper contributes to the accounting literature by answering the calls of Alewine (2020) and Tucker and Alewine (2022a, b) for more research into accounting in the space context. Specifically, the paper contributes by identifying mechanisms used by NASA to stimulate private investment in the space travel sector, as well as issues that have affected the implementation of these mechanisms. The paper also contributes to the literature by, based on the analysis, identifying a series of reflections designed to stimulate further management accounting research in the space context.

Details

Accounting, Auditing & Accountability Journal, vol. 37 no. 5
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 13 May 2024

Yeolan Lee and Eric A. Fong

A major obstacle regarding the measurement of an organization's sustainability and accountability in the space economy is defining the context and boundaries of commercial…

Abstract

Purpose

A major obstacle regarding the measurement of an organization's sustainability and accountability in the space economy is defining the context and boundaries of commercial activity in outer space. Here, we introduce an ecosystem framework to address this obstacle. We utilize this framework to analyze the space mining sector. Our ecosystem framework sets the space mining sector's boundaries and helps a firm identify key stakeholders, activities, policies, norms and common pool resources in that sector and the interactions between them; a significant step in structuring how to measure space sustainability and accountability.

Design/methodology/approach

Borrowing theories and perspectives from a wide range of academic fields, this paper conducts a comprehensive context analysis of the space mining ecosystem.

Findings

Using our ecosystem framework to define the context and set boundaries for the space mining sector allowed us to identify sustainability-related issues in the sector and offer roadmaps to develop sustainability measures and standards.

Originality/value

To the best of the authors’ knowledge, this is one of the first papers to introduce a framework to define boundaries in the global space economy and provides a tool to understand, measure and evaluate the space mining sector's environmental, social and economic issues.

Details

Accounting, Auditing & Accountability Journal, vol. 37 no. 5
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 15 September 2023

Kaushal Jani

This article takes into account object identification, enhanced visual feature optimization, cost effectiveness and speed selection in response to terrain conditions. Neither…

49

Abstract

Purpose

This article takes into account object identification, enhanced visual feature optimization, cost effectiveness and speed selection in response to terrain conditions. Neither supervised machine learning nor manual engineering are used in this work. Instead, the OTV educates itself without instruction from humans or labeling. Beyond its link to stopping distance and lateral mobility, choosing the right speed is crucial. One of the biggest problems with autonomous operations is accurate perception. Obstacle avoidance is typically the focus of perceptive technology. The vehicle's shock is nonetheless controlled by the terrain's roughness at high speeds. The precision needed to recognize difficult terrain is far higher than the accuracy needed to avoid obstacles.

Design/methodology/approach

Robots that can drive unattended in an unfamiliar environment should be used for the Orbital Transfer Vehicle (OTV) for the clearance of space debris. In recent years, OTV research has attracted more attention and revealed several insights for robot systems in various applications. Improvements to advanced assistance systems like lane departure warning and intelligent speed adaptation systems are eagerly sought after by the industry, particularly space enterprises. OTV serves as a research basis for advancements in machine learning, computer vision, sensor data fusion, path planning, decision making and intelligent autonomous behavior from a computer science perspective. In the framework of autonomous OTV, this study offers a few perceptual technologies for autonomous driving in this study.

Findings

One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV.

Originality/value

One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Expert briefing
Publication date: 11 October 2023

In late August, they landed near the lunar south pole. India thereby became the fourth country to achieve a soft landing on the moon, and the first to do so in the lunar south…

Book part
Publication date: 21 May 2024

Muhammad Shujaat Mubarik and Sharfuddin Ahmed Khan

Digital technologies (DTs) have emerged as a major driving force, transmuting the ways Supply Chains (SCs) are managed. The integration of DTs in supply chain management (SCM)…

Abstract

Digital technologies (DTs) have emerged as a major driving force, transmuting the ways Supply Chains (SCs) are managed. The integration of DTs in supply chain management (SCM), Digital Supply Chain Management (DSCM), has fundamentally reshaped the SCM landscape, offering new opportunities and challenges for organizations. This chapter provides a comprehensive overview of modern DTs and the way they impact modern SCM. This chapter has twofold objectives. First, it illustrates the major changes that DTs have brought to the supply chain landscape, unraveling their multifaceted implications. Second, it offers readers a deeper and comprehensive understanding of the challenges and opportunities arising from the incorporation of DTs into supply chains. By going through the chapter, readers will be able to have a comprehensive grasp of how DTs are reshaping SCM and how organizations can survive and thrive in the digital age. This chapter commences by shedding light on how DTs have and continue to redefine SCM, improving supply chain resilience, visibility, and sustainability in an increasingly complex and interconnected world. It also highlights the role of DTs in enhancing SC visibility, agility, and customer-centricity. Furthermore, this chapter briefly highlights the challenges related to the adoption (pre and post) of DTs in SCM, elucidating on issues related to talent acquisition, data security, and regulatory compliance. It also highlights the ethical and societal implications of this digital transformation, emphasizing the significance of responsible and sustainable practices. This chapter, with the help of three cases, illustrates how the adoption of DTs in SC can impact the various SC performance indicators.

Details

The Theory, Methods and Application of Managing Digital Supply Chains
Type: Book
ISBN: 978-1-80455-968-0

Keywords

Article
Publication date: 14 September 2023

Xunlei Shi, Qingyuan Wu, Jianjian Deng, Ken Chen and Jiwen Zhang

The purpose of this paper is to propose a strategy for the final assembly of helicopter fuselage with weak rigidity parts and mismatched jointing butt ends.

Abstract

Purpose

The purpose of this paper is to propose a strategy for the final assembly of helicopter fuselage with weak rigidity parts and mismatched jointing butt ends.

Design/methodology/approach

The strategy is based on path planning methods. Compared with traditional path planning methods, the configuration-space and collision detection in the method are different. The obstacles in the configuration-space are weakly rigid and allow continuous contact with the robot. The collision detection is based on interference magnitudes, and the result is divided into no collision, weak collision and strong collision. Only strong collision is unacceptable. Then a compliant jointing path planning algorithm based on RRT is designed, combined with some improvements in search efficiency.

Findings

A series of planning results show that the efficiency of this method is higher than original RRT under the same conditions. The effectiveness of the method is verified by a series of simulations and experiments on two sets of systems.

Originality/value

There are few reports on the automation technology of helicopter fuselage assembly. This paper analyzes the problem and provides a solution from the perspective of path planning. This method contains a new configuration-space and collision detection method adapted to this problem and could be intuitive for the jointing of other weakly rigid parts.

Details

Robotic Intelligence and Automation, vol. 43 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of 19