Search results

1 – 10 of over 3000
Article
Publication date: 23 September 2019

Omprakash Ramalingam Rethnam, Sivakumar Palaniappan and Velmurugan Ashokkumar

The purpose of this paper is to focus on life cycle cost analysis (LCCA) of 1 MW roof-top Solar Photovoltaic (PV) panels installed in warm and humid climatic region in Southern…

Abstract

Purpose

The purpose of this paper is to focus on life cycle cost analysis (LCCA) of 1 MW roof-top Solar Photovoltaic (PV) panels installed in warm and humid climatic region in Southern India. The effect of actual power generated from solar PV panels on financial indicators is evaluated.

Design/methodology/approach

LCCA is done using the actual power generated from solar PV panels for one year. The net present value (NPV), internal rate of return (IRR), simple payback period (SPP) and discounted payback period (DPP) are determined for a base case scenario. The effect of service life and the differences between the ideal power expected and the actual power generated is evaluated.

Findings

A base case scenario is evaluated using the actual power generation data, 25-year service life and 6 percent discount rate. The NPV, IRR, SPP and DPP are found to be INR 13m, 8 percent, 10.9 years and 18.8 years respectively. It is found that the actual power generated is about one-third less than the ideal power estimated by consultants prior to project bidding. The payback period increases by 70–120 percent when the actual power generated from solar PV panels is considered.

Originality/value

The return on investment calculated based on ideal power generation data without considering the operation and maintenance related aspects may lead to incorrect financial assessment. Hence, strategies toward solar power generation should also focus on the actual system performance during operation.

Details

Built Environment Project and Asset Management, vol. 10 no. 1
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 31 May 2022

Ye Li, Xue Bai, Bin Liu and Yuying Yang

In order to accurately forecast nonlinear and complex characteristics of solar power generation in China, a novel discrete grey model with time-delayed power term (abbreviated as

Abstract

Purpose

In order to accurately forecast nonlinear and complex characteristics of solar power generation in China, a novel discrete grey model with time-delayed power term (abbreviated as TDDGM(1,1,tα) is proposed in this paper.

Design/methodology/approach

Firstly, the time response function is deduced by using mathematical induction, which overcomes the defects of the traditional grey model. Then, the genetic algorithm is employed to determine the optimal nonlinear parameter to improve the flexibility and adaptability of the model. Finally, two real cases of installed solar capacity forecasting are given to verify the proposed model, showing its remarkable superiority over seven existing grey models.

Findings

Given the reliability and superiority of the model, the model TDDGM(1,1,tα) is applied to forecast the development trend of China's solar power generation in the coming years. The results show that the proposed model has higher prediction accuracy than the comparison models.

Practical implications

This paper provides a scientific and efficient method for forecasting solar power generation in China with nonlinear and complex characteristics. The forecast results can provide data support for government departments to formulate solar industry development policies.

Originality/value

The main contribution of this paper is to propose a novel discrete grey model with time-delayed power term, which can handle nonlinear and complex time series more effectively. In addition, the genetic algorithm is employed to search for optimal parameters, which improves the prediction accuracy of the model.

Details

Grey Systems: Theory and Application, vol. 13 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Open Access
Article
Publication date: 13 August 2020

Mariam AlKandari and Imtiaz Ahmad

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate…

12377

Abstract

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate conditions, which fluctuate over time. In this research, we propose a hybrid model that combines machine-learning methods with Theta statistical method for more accurate prediction of future solar power generation from renewable energy plants. The machine learning models include long short-term memory (LSTM), gate recurrent unit (GRU), AutoEncoder LSTM (Auto-LSTM) and a newly proposed Auto-GRU. To enhance the accuracy of the proposed Machine learning and Statistical Hybrid Model (MLSHM), we employ two diversity techniques, i.e. structural diversity and data diversity. To combine the prediction of the ensemble members in the proposed MLSHM, we exploit four combining methods: simple averaging approach, weighted averaging using linear approach and using non-linear approach, and combination through variance using inverse approach. The proposed MLSHM scheme was validated on two real-time series datasets, that sre Shagaya in Kuwait and Cocoa in the USA. The experiments show that the proposed MLSHM, using all the combination methods, achieved higher accuracy compared to the prediction of the traditional individual models. Results demonstrate that a hybrid model combining machine-learning methods with statistical method outperformed a hybrid model that only combines machine-learning models without statistical method.

Details

Applied Computing and Informatics, vol. 20 no. 3/4
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 1 April 2021

Nusrat Jahan Imu, Anayo Ezeamama and Saheed Matemilola

Decentralized solar systems are increasingly being used as alternative source of off-grid electrification in Bangladesh. They offer solutions to provide (clean) electricity to the…

Abstract

Purpose

Decentralized solar systems are increasingly being used as alternative source of off-grid electrification in Bangladesh. They offer solutions to provide (clean) electricity to the low-income households that are not currently served by the national grid. The standards of solar systems need to be improved to maximize the benefits they offer for off-grid electrification.

Design/methodology/approach

A quantitative research approach was used to explore the power output performance of six solar systems samples. In order to realize a proper load management, daily power production was measured to determine the generation capacity of 50, 60 and 100 Wp monocrystalline and polycrystalline modules when average solar irradiation was 916 W/m2. In the testing system, the irradiation was measured by panel analyzer HT instrument I-V 400. The load arrangement comprised of different kinds of appliances (fan, light, TV). The daily consumption of energy by these loads was calculated using daily operational hours to determine system power performance.

Findings

The authors found that monocrystalline system performs better than polycrystalline by 0.39 kilowatt-hour (kWh) with capacity of 100 watt-peak (Wp) modules. The carbon dioxide (CO2) emissions reduction potential of our sample solar systems were also estimated by assuming a scenario. This was derived by using the electricity emission factor for natural gas (CH4), since CH4 is the main source of energy for power generation in Bangladesh. Savings in CO2 of 0.52 kgCO2/kWh is possible with the adoption of a 100 Wp monocrystalline module.

Practical implications

Government actions that promote the use of monocrystalline module will enhance the benefits of the use of solar systems in providing quality and sustainable electricity. This will contribute to government's efforts towards achieving some of the United Nations (UN) sustainable development goals (SDG) and resilience of the most vulnerable population to the effects and impacts of climate change.

Originality/value

Almost all solar modules found in off-grid areas are polycrystalline whose energy generation capacity is much lower compared to monocrystalline types. But use of low efficient polycrystalline solar module hindered the development of country's solar sector and option to save carbon emission. The use of highly efficient monocrystalline solar module will save also the country's land as the country has land scarcity challenges for establishing large-scale solar power plant. The authors also recommend actions that can be implemented at the national level to improve the attractiveness of monocrystalline solar systems in Bangladesh.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 16 November 2020

Soudamini Behera, Sasmita Behera, Ajit Kumar Barisal and Pratikhya Sahu

Dynamic economic and emission dispatch (DEED) aims to optimally set the active power generation with constraints in a power system, which should target minimum operation cost and…

Abstract

Purpose

Dynamic economic and emission dispatch (DEED) aims to optimally set the active power generation with constraints in a power system, which should target minimum operation cost and at the same time minimize the pollution in terms of emission when the load dynamically changes hour to hour. The purpose of this study is to achieve optimal economic and emission dispatch of an electrical system with a renewable generation mix, consisting of 3-unit thermal, 2-unit wind and 2-unit solar generators for dynamic load variation in a day. An improved version of a simple, easy to understand and popular optimization algorithm particle swarm optimization (PSO) referred to as a constriction factor-based particle swarm optimization (CFBPSO) algorithm is deployed to get optimal solution as compared to PSO, modified PSO and red deer algorithm (RDA).

Design/methodology/approach

Different model with and without wind and solar power generating systems; with valve point effect is analyzed. The thermal generating system (TGs) are the major green house gaseous emission producers on earth. To take up this ecological issue in addition to economic operation cost, the wind and solar energy sources are integrated with the thermal system in a phased manner for electrical power generation and optimized for dynamic load variation. This DEED being a multi-objective optimization (MO) has contradictory objectives of fuel cost and emission. To get the finest combination of the two objectives and to get a non-dominated solution the fuzzy decision-making (FDM) method is used herein, the MO problem is solved by a single objective function, including min-max price penalty factor on emission in the total cost to treat as cost. Further, the weight factor accumulation (WFA) technique normalizes the pair of objectives into a single objective by giving each objective a weightage. The weightage is decided by the FDM approach in a systematic manner from a set of non-dominated solutions. Here, the CFBPSO algorithm is applied to lessen the total generation cost and emission of the thermal power meeting the load dynamically.

Findings

The efficacy of the contribution of stochastic wind and solar power generation with the TGs in the dropping of net fuel cost and emission in a day for dynamic load vis-à-vis the case with TGs is established.

Research limitations/implications

Cost and emission are conflicting objectives and can be handled carefully by weight factors and penalty factors to find out the best solution.

Practical implications

The proposed methodology and its strategy are very useful for thermal power plants incorporating diverse sources of generations. As the execution time is very less, practical implementation can be possible.

Social implications

As the cheaper generation schedule is obtained with respect to time, cost and emission are minimized, a huge revenue can be saved over the passage of time, and therefore it has a societal impact.

Originality/value

In this work, the WFA with the FDM method is used to facilitate CFBPSO to decipher this DEED multi-objective problem. The results reveal the competence of the projected proposal to satisfy the dynamic load demand and to diminish the combined cost in contrast to the PSO algorithm, modified PSO algorithm and a newly developed meta-heuristic algorithm RDA in a similar system.

Open Access
Article
Publication date: 1 May 2020

Juliana Pacheco Barbosa, Joisa Dutra Saraiva and Julia Seixas

The purpose of this paper is to highlight the opportunity for the energy policy in Brazil to tackle the very high cost-effectiveness potencial of solar energy to the power system…

3602

Abstract

Purpose

The purpose of this paper is to highlight the opportunity for the energy policy in Brazil to tackle the very high cost-effectiveness potencial of solar energy to the power system. Three mechanisms to achieve ambitious reductions in the greenhouse gas emissions from the power sector by 2030 and 2040 are assessed wherein treated as solar targets under ambitious reductions in the greenhouse gas emissions from the power sector. Then, three mechanisms to achieve these selected solar targets are suggested.

Design/methodology/approach

This paper reviews current and future incentive mechanisms to promote solar energy. An integrated energy system optimization model shows the most cost-efficient deployment level. Incentive mechanisms can promote renewable sources, aiming to tackle climate change and ensuring energy security, while taking advantage of endogenous energy resources potential. Based on a literature review, as well as on the specific characteristics of the Brazilian power system, under restrictions for the expansion of hydroelectricity and ambitious limitation in the emissions of greenhouse gases from the power sector.

Findings

The potential unexploited of solar energy is huge but it needs the appropriate incentive mechanism to be deployed. These mechanisms would be more effective if they have a specific technological and temporal focus. The solar energy deployment in large scale is important to the mitigation of climate change.

Originality/value

The value of the research is twofold: estimations of the cost-effective potential of solar technologies, generated from an integrated optimization energy model, fully calibrated for the Brazilian power system, while tacking the increasing electricity demand, the expected reduction of greenhouse gas emissions and the need to increase the access to clean and affordable energy, up to 2040; proposals of three mechanisms to deploy centralized PV, distributed PV and solar thermal power, taking the best experiences in several countries and the recent Brazilian cases.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 3
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 1 January 2014

Damasen Ikwaba Paul and James Uhomoibhi

The purpose of this paper is to examine and discuss, in-depth, how solar electricity can be developed and used to tackle grid electricity-related problems in African countries…

1517

Abstract

Purpose

The purpose of this paper is to examine and discuss, in-depth, how solar electricity can be developed and used to tackle grid electricity-related problems in African countries suffering from unreliable and inadequate grid electricity.

Design/methodology/approach

The paper discusses in depth the current status of grid electricity in Africa continent and suggested solar electricity as an alternative cost-effective method to the existing grid electricity problem in remote areas. An extensive analysis of the major contribution of solar electricity in various sectors such as economic, health, communication, social and environmental benefits is provided. The paper concludes with a discussion on how solar power generation can be developed.

Findings

The paper shows that in developed countries where ICT has been applied extensively, ICT offers increased opportunities for sustainable economic development and plays a critical role in rapid economic growth, productive capacity improvements, education, government, agriculture and international competitiveness enhancement. The paper has pointed out that ICT has yet to make significant impact in most African countries due to lack of reliable and adequate electricity. Solar electricity has been seen as the most cost-effective way of generating electricity, especially in remote rural areas, for ICT devices. For the widespread of solar power generation in Africa, various strategies have been identified which include training of qualified solar engineers and technicians, establishing PV markets and business modes, introduction of solar energy education in schools and universities, political leaders appreciating solar electricity as one of the major energy component, lowering initial cost of the PV technology, availability of finance mechanisms for rural communities, import tax exemption and African countries regarding rural electricity as one of the basic needs.

Practical implications

The paper shows that the problems of lack of qualified solar technicians and established PV markets and business modes (especially in remote areas), lack of solar energy education in schools have to be addressed before the benefits of ICT in Africa can be seen. Other issues include African countries appreciating solar electricity as one of the major energy component, lowering initial cost of the PV technology, availability of finance mechanisms for customers, import tax exemption and African countries regarding rural electricity as one of the basic needs like food, shelter and clothing. Overhaul of existing systems needs to take place in order to provide the means to deal with some of these issues.

Originality/value

Availability of reliable electrical energy remains crucial for development of ICT in rural African countries. Solar electricity is clearly one of the most promising prospects to the grid electricity problem in African countries because most African countries lie in the sunshine belt. The paper raises awareness about this in a unique way and suggests some novel measures about increasing the availability of solar systems for solar power generation. It is anticipated that the increases in solar power generation, especially in remote areas, will increase the use and application of ICT in various sectors.

Details

Campus-Wide Information Systems, vol. 31 no. 1
Type: Research Article
ISSN: 1065-0741

Keywords

Article
Publication date: 28 July 2020

Kada Bouchouicha, Nadjem Bailek, Abdelhak Razagui, Mohamed EL-Shimy, Mebrouk Bellaoui and Nour El Islam Bachari

This study aims to estimate the electric power production of the 20 MWp solar photovoltaic (PV) plant installed in the Adrar region, South of Algeria using minimal knowledge about…

Abstract

Purpose

This study aims to estimate the electric power production of the 20 MWp solar photovoltaic (PV) plant installed in the Adrar region, South of Algeria using minimal knowledge about weather conditions.

Design/methodology/approach

In this study, simulation models based on linear and nonlinear approaches were used to estimate accurate energy production from minimum radiometric and meteorological data. Simulations have been carried out by using multiple linear regression (MLR) and artificial neural network (ANN) models with three basic types of neuron connection architectures, namely, feed-forward neural network, cascade-forward neural network (CNN) and Elman neural network. The performance is measured based on evaluation indexes, namely, mean absolute percentage error, normalized mean absolute error and normalized root mean square error.

Findings

A comparison of the proposed ANN models has been made with MLR models. The performance analysis indicates that all the ANN-based models are superior in prediction accuracy and stability, and among these models, the most accurate results are obtained with the use of CNN-based models.

Practical implications

The considered model will be adopted in solar PV forecasting areas as part of the operational forecasting chain based on numerical weather prediction. It can be an effective and powerful forecasting approach for solar power generation for large-scale PV plants.

Social implications

The operational forecasting system can be used to generate an effective schedule for national grid electricity system operators to ensure the sustainability as well as favourable trading performance in the electricity, such as adjusting the scheduling plan, ensuring power quality, reducing depletion of fossil fuel resources and consequently decreasing the environmental pollution.

Originality/value

The proposed method uses the instantaneous radiometric and meteorological data in 15-min time interval recorded over the two years of operation, which made the result exploits a fact that the energy production estimation of PV power generation station is comparatively more accurate.

Article
Publication date: 29 November 2019

Manish Kumar Ghodki, Akhilesh Swarup and Yash Pal

The purpose of this paper is to design and develop an IR and sprinkler based embedded controller operated robotic arm for automatic dust removal system to mitigate the dust effect…

Abstract

Purpose

The purpose of this paper is to design and develop an IR and sprinkler based embedded controller operated robotic arm for automatic dust removal system to mitigate the dust effect on the solar panel surface, since dust accumulation normally affected by real weather conditions is one of the serious concern for the deterioration of photovoltaic (PV) system output.

Design/methodology/approach

The system is a wet cleaning device which provides a cheap silicon rubber-based wiping operation controlled by the pulse width modulation-operated motors of robotic arm. The IEEE 1149.1-compliant mixed signal-embedded platform of C8051F226DK is involved to command the complete system.

Findings

A prototype of 30 WP system is capable of producing an inspiring average value of 11.26 per cent in energy increase, 13.63 per cent in PV module efficiency and 85.20 per cent in performance ratio of the system after 73 days of cleaning in summer season. In addition, a total of 1,617.93 W power; 1,0516.55 Wh energy; and 350.55 KWh/KWP final yield was found during the entire cleaning period.

Originality/value

A novel technique of the implementation of IR sensor and sprinkler in dust mitigation is proposed in this paper. The IR sensor is used as a versatile object which can manage the robotic arm setting and control the automatic switching between cleaning and charging, as well as identify the thermal condition of solar panel for overheating.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 30 September 2020

Ali Mostafaeipour, Mojtaba Qolipour, Mostafa Rezaei, Mehdi Jahangiri, Alireza Goli and Ahmad Sedaghat

Every day, the sun provides by far more energy than the amount necessary to meet the whole world’s energy demand. Solar energy, unlike fossil fuels, does not suffer from depleting…

Abstract

Purpose

Every day, the sun provides by far more energy than the amount necessary to meet the whole world’s energy demand. Solar energy, unlike fossil fuels, does not suffer from depleting resource and also releases no greenhouse gas emissions when being used. Hence, using solar irradiance to produce electricity via photovoltaic (PV) systems has significant benefits which can lead to a sustainable and clean future. In this regard, the purpose of this study is first to assess the technical and economic viability of solar power generation sites in the capitals of the states of Canada. Then, a novel integrated technique is developed to prioritize all the alternatives.

Design/methodology/approach

In this study, ten provinces in Canada are evaluated for the construction of solar power plants. The new hybrid approach composed of data envelopment analysis (DEA), balanced scorecard (BSC) and game theory (GT) is implemented to rank the nominated locations from techno-economic-environmental efficiency aspects. The input data are obtained using HOMER software.

Findings

Applying the proposed hybrid approach, the order of high to low efficiency locations was found as Winnipeg, Victoria, Edmonton, Quebec, Halifax, St John’s, Ottawa, Regina, Charlottetown and Toronto. Construction of ten solar plants in the ten studied locations was assessed and it was ascertained that usage of solar energy in Winnipeg, Victoria and Edmonton would be economically and environmentally justified.

Originality/value

As to novelty, it should be clarified that the authors propose an effective hybrid method combining DEA, BSC and GT for prioritizing all available scenarios concerned with the construction of a solar power plant.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of over 3000