Search results

11 – 20 of over 15000
Book part
Publication date: 28 March 2015

David McQueen

The focus of the chapter is on disputes around corporate social responsibility (CSR) in the fossil fuel industry and how media and social networking technologies are deployed in a…

Abstract

Purpose

The focus of the chapter is on disputes around corporate social responsibility (CSR) in the fossil fuel industry and how media and social networking technologies are deployed in a virtual war between oil corporations and dissident, activist and protest groups.

Methodology/approach

Communications by BP, Shell, and their opponents in this virtual war are compared, especially in relation to the creative use of the internet, digital technologies, and social media. Through a case study approach, the chapter shows how communications often center on contested notions of CSR and claims by the oil giants about their environmental impact, which opponents dismiss as “greenwashing.” The various techniques deployed by both sides in this wide-ranging “PR war” are explored and contrasted in detail.

Findings

The findings for each case study reveal the diverse, complex, and changing nature of the relationship between the oil industry and its critics. The chapter concludes by arguing that if CSR is seen as “greenwashing” by the public, it is only likely to fuel widespread skepticism of the oil and gas sector and of corporate claims about the environment more generally.

Research limitations/implications

The research offers a snapshot of online and social media campaigns and PR strategies and tactics within the oil and gas industry rather than empirically grounded set of findings that can be easily applied to other fields.

Practical implications

Practical implications include attention to inflated or understated claims and the use of citizen testimony and humor to puncture CSR “rhetoric.” There is consideration of use of digital technologies by activists and attention to the way public debates and consultations are conducted. The need for a more respectful engagement with local communities by all parties engaging in public relations is underlined.

Originality/value

The chapter applies the concept of “asymmetrical warfare” from conflict studies within the media and communications tradition to provide a fresh revaluation of the term “PR war,” It offers a rare focus on online efforts by activist to subvert CSR-related branding, marketing, and communications. Discussion of the use of parody alongside factual and emotional arguments to challenge corporate hegemony also provides revealing insights.

Details

Corporate Social Responsibility in the Digital Age
Type: Book
ISBN: 978-1-78441-582-2

Article
Publication date: 29 May 2023

Ting Li, Xianggang Chen, Junhai Wang, Lixiu Zhang, Xinran Li and Xiaoyi Wei

The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil…

Abstract

Purpose

The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil for friction and wear tests to simulate the wear conditions of hybrid bearings.

Design/methodology/approach

Through the characterization and analysis of the morphology of wear scars and the elemental composition of friction films, the tribological behavior and wear mechanism of sample materials as lubricant additives were investigated and the effects of shell thickness and sample concentration on the tribological properties of core–shell composite lubricant additives were discussed.

Findings

The findings demonstrate that each of the five sample materials can, to varying degrees, enhance the lubricating qualities of the base oil and that the core–shell nanocomposite sample lubricant additive has superior lubricating properties to those of ZnFe2O4 and MoS2 alone, among them ZnFe2O4@MoS2-2 core–shell composites with moderate shell thickness performed most ideally. In addition, the optimal concentration of the ZnFe2O4@MoS2 lubricant additive was 0.5 Wt.%, and a concentration that was too high led to particle deposition and affected the friction effect.

Originality/value

In this work, ZnFe2O4@MoS2 core–shell composites were synthesized for the first time using ZnFe2O4 as the carrier and the lubrication mechanism of core–shell composites and single materials were compared and studied, which illustrated the advantages of core–shell composite lubricant additives. At the same time, the influence of different shell thicknesses on the lubricant additives of core–shell composites was studied.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0367/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 June 2023

Prashant Kumar Choudhary

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Abstract

Purpose

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Design/methodology/approach

A novel optimization method is developed to predict the optimal fiber orientation in composite cylindrical shell. The optimization is carried out by coupling analytical and finite element (FE) results with a genetic algorithm (GA)-based optimization scheme developed in MATLAB. Linear eigenvalue were performed to evaluate the buckling behaviour of composite cylinders. In analytical part, besides the buckling analysis, Tsai-Wu failure criteria are employed to analyse the failure of the composite structure.

Findings

The optimal result obtained through this study is compared with traditionally used laminates with 0, 90, ±45 orientation. The results suggest that the application of this novel optimization algorithm leads to an increase of 94% in buckling strength.

Originality/value

The proposed optimal fiber orientation can provide a practical and efficient way for the designers to evaluate the buckling pressure of the composite shells in the design stage.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 September 2023

Jun-Hui Chai, Jun-Ping Zhong, Bo Xu, Zi-Jian Zhang, Zhengxiang Shen, Xiao-Long Zhang and Jian-Min Shen

The high-pressure accumulator has been widely used in the hydraulic system. Failure pressure prediction is crucial for the safe design and integrity assessment of the…

Abstract

Purpose

The high-pressure accumulator has been widely used in the hydraulic system. Failure pressure prediction is crucial for the safe design and integrity assessment of the accumulators. The purpose of this study is to accurately predict the burst pressure and location for the accumulator shells due to internal pressure.

Design/methodology/approach

This study concentrates the non-linear finite element simulation procedure, which allows determination of the burst pressure and crack location using extensive plastic straining criterion. Meanwhile, the full-scale hydraulic burst test and the analytical solution are conducted for comparative analysis.

Findings

A good agreement between predicted and measured the burst pressure that was obtained, and the predicted failure point coincided very well with the fracture location of the actual shell very well. Meanwhile, the burst pressure of the shells increases with wall thickness, independent of the length. It can be said that the non-linear finite element method can be employed to predict the failure behavior of a cylindrical shell with sufficient accuracy.

Originality/value

This paper can provide a designer with additional insight into how the pressurized hollow cylinder might fail, and the failure pressure has been predicted accurately with a minimum error below 1%, comparing the numerical results with experimental data.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 24 January 2023

Yongliang Wang

This study aims to provide a reliable and effective algorithm that is suitable for addressing the problems of continuous orders of frequencies and modes under different boundary…

Abstract

Purpose

This study aims to provide a reliable and effective algorithm that is suitable for addressing the problems of continuous orders of frequencies and modes under different boundary conditions, circumferential wave numbers and thickness-to-length ratios of moderately thick circular cylindrical shells. The theory of free vibration of rotating cylindrical shells is of utmost importance in fields such as structural engineering, rock engineering and aerospace engineering. The finite element method is commonly used to study the theory of free vibration of rotating cylindrical shells. The proposed adaptive finite element method can achieve a considerably more reliable high-precision solution than the conventional finite element method.

Design/methodology/approach

On a given finite element mesh, the solutions of the frequency mode of the moderately thick circular cylindrical shell were obtained using the conventional finite element method. Subsequently, the superconvergent patch recovery displacement method and high-order shape function interpolation techniques were introduced to obtain the superconvergent solution of the mode (displacement), while the superconvergent solution of the frequency was obtained using the Rayleigh quotient computation. Finally, the superconvergent solution of the mode was used to estimate the errors of the finite element solutions in the energy norm, and the mesh was subdivided to generate a new mesh in accordance with the errors.

Findings

In this study, a high-precision and reliable superconvergent patch recovery solution for the vibration modes of variable geometrical rotating cylindrical shells was developed. Compared with conventional finite element method, under the challenging varying geometrical circumferential wave numbers, and thickness–length ratios, the optimised finite element meshes and high-precision solutions satisfying the preset error limits were obtained successfully to solve the frequency and mode of continuous orders of rotating cylindrical shells with multiple boundary conditions such as simple and fixed supports, demonstrating good solution efficiency. The existing problem on the difficulty of adapting a set of meshes to the changes in vibration modes of different orders is finally overcome by applying the adaptive optimisation.

Originality/value

The approach developed in this study can accurately obtain the superconvergent patch recovery solution of the vibration mode of rotating cylindrical shells. It can potentially be extended to fine numerical models and high-precision computations of vibration modes (displacement field) and solid stress (displacement derivative field) for general structural special value problems, which can be extensively applied in the field of engineering computations in the future. Furthermore, the proposed method has the potential for adaptive analyses of shell structures and three-dimensional structures with crack damage. Compared with conventional finite element methods, significant advantages can be achieved by solving the eigenvalues of structures with high precision and stability.

Article
Publication date: 13 December 2021

Yongliang Wang and Jianhui Wang

This study presents a novel hp-version adaptive finite element method (FEM) to investigate the high-precision eigensolutions of the free vibration of moderately thick circular…

Abstract

Purpose

This study presents a novel hp-version adaptive finite element method (FEM) to investigate the high-precision eigensolutions of the free vibration of moderately thick circular cylindrical shells, involving the issues of variable geometrical factors, such as the thickness, circumferential wave number, radius and length.

Design/methodology/approach

An hp-version adaptive finite element (FE) algorithm is proposed for determining the eigensolutions of the free vibration of moderately thick circular cylindrical shells via error homogenisation and higher-order interpolation. This algorithm first develops the established h-version mesh refinement method for detecting the non-uniform distributed optimised meshes, where the error estimation and element subdivision approaches based on the superconvergent patch recovery displacement method are introduced to obtain high-precision solutions. The errors in the vibration mode solutions in the global space domain are homogenised and approximately the same. Subsequently, on the refined meshes, the algorithm uses higher-order shape functions for the interpolation of trial displacement functions to reduce the errors quickly, until the solution meets a pre-specified error tolerance condition. In this algorithm, the non-uniform mesh generation and higher-order interpolation of shape functions are suitable for addressing the problem of complex frequencies and modes caused by variable structural geometries.

Findings

Numerical results are presented for moderately thick circular cylindrical shells with different geometrical factors (circumferential wave number, thickness-to-radius ratio, thickness-to-length ratio) to demonstrate the effectiveness, accuracy and reliability of the proposed method. The hp-version refinement uses fewer optimised meshes than h-version mesh refinement, and only one-step interpolation of the higher-order shape function yields the eigensolutions satisfying the accuracy requirement.

Originality/value

The proposed combination of methodologies provides a complete hp-version adaptive FEM for analysing the free vibration of moderately thick circular cylindrical shells. This algorithm can be extended to general eigenproblems and geometric forms of structures to solve for the frequency and mode quickly and efficiently.

Article
Publication date: 21 March 2008

Namita Nanda and J.N. Bandyopadhyay

To investigate the large amplitude free flexural vibration of doubly curved shallow shells in the presence of cutouts.

Abstract

Purpose

To investigate the large amplitude free flexural vibration of doubly curved shallow shells in the presence of cutouts.

Design/methodology/approach

Finite element model using an eight‐noded C0 continuity, isoparametric quadrilateral element is employed. Nonlinear strains of von Karman type are incorporated into the first‐order shear deformation theory.

Findings

Cylindrical shell shows mostly hard spring behavior whereas spherical shell shows both hard spring and soft spring behavior with the increase of amplitude ratios for different cutout sizes, radii of curvature and thickness parameters. At a particular value of the amplitude ratio, the frequency ratio of shells is governed by the interactive effects of stiffness and mass.

Practical implications

Aircraft, spacecraft and many other structures where shell panels are used, undergo large amplitude nonlinear vibrations.

Originality/value

The paper will assist researchers of vibration behavior of elastic systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 19 January 2015

Miguel Castilho, Barbara Gouveia, Inês Pires, Jorge Rodrigues and Manuel Pereira

This paper aims to study the influence of the binder saturation level on the accuracy and on the mechanical properties of three-dimensional (3D)-printed scaffolds for bone tissue…

1092

Abstract

Purpose

This paper aims to study the influence of the binder saturation level on the accuracy and on the mechanical properties of three-dimensional (3D)-printed scaffolds for bone tissue engineering.

Design/methodology/approach

To study the influence of the liquid binder volume on the models accuracy, two quality test plates with different macropore sizes were designed and produced. For the mechanical and physical characterisation, cylindrical specimens were used. The models were printed using a calcium phosphate powder, which was characterised in terms of composition, particle size and morphology, by X-ray diffraction (XRD), laser diffraction and Scanning electron microscopy (SEM) analysis. The sample’s physical characterisation was made using the Archimedes method (porosity), SEM, micro-computer tomography (CT) and digital scan techniques, while the mechanical characterisation was performed by means of uniaxial compressive tests. Strength distribution was analysed using a statistical Weibull approach, and the dependence of the compressive strength on the porosity was discussed.

Findings

The saturation level is determinant for the structural characteristics, accuracy and strength the models produced by three-dimensional printing (3DP). Samples printed with the highest saturation showed higher compressive strengths (24 MPa), which are over the human trabecular bone. The models printed with lower saturations presented the highest accuracy and pore interconnectivity.

Originality/value

This study allowed to acquire important knowledge concerning the effects of shell/core saturation on the overall performance of the 3DP. With this information it is possible to devise scaffolds with the required properties for bone scaffold engineering.

Details

Rapid Prototyping Journal, vol. 21 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 1990

Alphose Zingoni and Milija N. Pavlović

The accuracy of the bending disturbances in (axisymmetrically loaded) spherical shells is computed by means of the widely used simplified method known as Geckeler's approximation…

Abstract

The accuracy of the bending disturbances in (axisymmetrically loaded) spherical shells is computed by means of the widely used simplified method known as Geckeler's approximation (often employed as a benchmark for numerical models). The study is based on a comparison between Geckeler's approach and a related, but ‘superior’ approximation which, for practical purposes, may be considered to be exact. Conclusions are drawn from the results of a parametric investigation that encompasses various loading types, boundary conditions and shell geometries (i.e. springing angles and slenderness ratios).

Details

Engineering Computations, vol. 7 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 8 January 2020

Mohammad Amin Shahmohammadi, Mojtaba Azhari, Mohammad Mehdi Saadatpour and Saeid Sarrami-Foroushani

This paper aims to analyze the stability of laminated shells subjected to axial loads or external pressure with considering various geometries and boundary conditions. The main…

Abstract

Purpose

This paper aims to analyze the stability of laminated shells subjected to axial loads or external pressure with considering various geometries and boundary conditions. The main aim of the present study is developing an efficient combined method which uses the advantages of different methods, such as finite element method (FEM) and isogeometric analysis (IGA), to achieve multipurpose targets. Two types of material including laminated composite and sandwich functionally graded material are considered.

Design/methodology/approach

A novel type of finite strip method called isogeometric B3-spline finite strip method (IG-SFSM) is used to solve the eigenvalue buckling problem. IG-SFSM uses B3-spline basis functions to interpolate the buckling displacements and mapping operations in the longitudinal direction of the strips, whereas the Lagrangian functions are used in transverse direction. The current presented IG-SFSM is formulated based on the degenerated shell method.

Findings

The buckling behavior of laminated shells is discussed by solving several examples corresponding to shells with various geometries, boundary conditions and material properties. The effects of mechanical and geometrical properties on critical loads of shells are investigated using the related results obtained by IG-SFSM.

Originality/value

This paper shows that the proposed IG-SFSM leads to the critical loads with an approved accuracy comparing with the same examples extracted from the literature. Moreover, it leads to a high level of convergence rate and low cost of solving the stability problems in comparison to the FEM.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

11 – 20 of over 15000