Search results

1 – 10 of 200
Article
Publication date: 25 February 2014

Xue Xinhua, Zhang Wohua and Xingguo Yang

The paper aims to clarify the relationship between the micro-structures of porous media and the coefficient of permeability. Most materials involve different types of defects like…

Abstract

Purpose

The paper aims to clarify the relationship between the micro-structures of porous media and the coefficient of permeability. Most materials involve different types of defects like caves, pores and cracks, which are important characters of porous media and have a great influence on the physical properties of materials. To study the seepage mechanical characteristics of damaged porous media, the constitutive model of porous media dealing with coupled modeling of pores damage and its impact on permeability property of a deforming media was studied in this paper.

Design/methodology/approach

The paper opted for an exploratory study using the approach of continuum damage mechanics (CDM).

Findings

The paper provides some new insights on the fluid dynamics of porous media. The dynamic evolution model of permeability coefficient established in this paper can be used to model the fluid flow problems in damaged porous media. Moreover, the modified Darcy's law developed in this paper is considered to be an extension of the Darcy's law for fluid flow and seepage in a porous medium.

Research limitations/implications

Owing to the limitations of time, conditions, funds, etc., the research results should be subject to multifaceted experiments before their innovative significance can be fully verified.

Practical implications

The paper includes implications for the development of fluid dynamics of porous media.

Originality/value

This paper fulfils an identified need to study the relationship between the micro-structures of porous media and the coefficient of permeability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 November 2020

Ji Youjun, K. Vafai, Huijin Xu and Liu Jianjun

This paper aims to establish a mathematical model for water-flooding considering the impact of fluid–solid coupling to describe the process of development for a low-permeability…

Abstract

Purpose

This paper aims to establish a mathematical model for water-flooding considering the impact of fluid–solid coupling to describe the process of development for a low-permeability reservoir. The numerical simulation method was used to analyze the process of injected water channeling into the interlayer.

Design/methodology/approach

Some typical cores including the sandstone and the mudstone were selected to test the permeability and the stress sensitivity, and some curves of the permeability varying with the stress for the cores were obtained to demonstrate the sensitivity of the formation. Based on the experimental results and the software Eclipse and Abaqus, the main injection parameters to reduce the amount of the injected water in flowing into the interlayer were simulated.

Findings

The results indicate that the permeability of the mudstone is more sensitive to the stress than sandstone. The injection rate can be as high as possible on the condition that no crack is activated or a new fracture is created in the development. For the B82 block of Daqing oilfield, the suggested pressure of the production pressure should be around 1–3MPa, this pressure must be gradually reached to get a higher efficiency of water injection and avoid damaging the casing.

Originality/value

This work is beneficial to ensure stable production and provide technical support to the production of low permeability reservoirs containing an interlayer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 November 2019

Wu Huijun, Zhan Diao and Kaizuo Fan

The purpose of this paper is to focus on the durability of underwater non-dispersible concrete in seawater environment.

Abstract

Purpose

The purpose of this paper is to focus on the durability of underwater non-dispersible concrete in seawater environment.

Design/methodology/approach

In this paper, ten groups of underwater non-dispersible concrete mixtures were designed, and the anti-dispersibility and fluidity of the mixtures were tested.

Findings

The durability test analysis shows that different pouring methods have different effects on the durability of concrete. The durability of concrete poured on land is better than that poured in water. Different mineral admixtures have different effects on the durability of concrete: the frost resistance of the underwater non-dispersible concrete specimens with silica fume is the best; the impermeability and chloride ion permeability of the non-dispersible underwater concrete specimens with waterproofing agent are the best; and the alternation of wetting and drying has adverse effects on the durability indexes of the non-dispersible underwater concrete.

Originality/value

The durability of underwater non-dispersible concrete is tested and the results can be used for reference in engineering practice.

Details

International Journal of Structural Integrity, vol. 11 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 January 2023

Yongliang Wang and Nana Liu

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this…

Abstract

Purpose

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this phenomenon indicates that the stress shadow effects around the fractures are the main mechanism causing this behaviour. Further studies and simulations of the stress shadow effects are necessary to understand the controlling mechanism and evaluate the fracturing effect.

Design/methodology/approach

In the process of stress-dependent unstable dynamic propagation of fractures, there are both continuous stress fields and discontinuous fractures; therefore, in order to study the stress-dependent unstable dynamic propagation of multistage fracture networks, a series of continuum-discontinuum numerical methods and models are reviewed, including the well-developed extended finite element method, displacement discontinuity method, boundary element method and finite element-discrete element method.

Findings

The superposition of the surrounding stress field during fracture propagation causes different degrees of stress shadow effects between fractures and the main controlling factors of stress shadow effects are fracture initiation sequence, perforation cluster spacing and well spacing. The perforation cluster spacing varies with the initiation sequence, resulting in different stress shadow effects between fractures; for example, the smaller the perforation cluster spacing and well spacing are, the stronger the stress shadow effects are and the more seriously the fracture propagation inhibition arises. Moreover, as the spacing of perforation clusters and well spacing increases, the stress shadow effects decrease and the fracture propagation follows an almost straight pattern. In addition, the computed results of the dynamic distribution of stress-dependent unstable dynamic propagation of fractures under different stress fields are summarised.

Originality/value

A state-of-art review of stress shadow effects and continuum-discontinuum methods for stress-dependent unstable dynamic propagation of multiple hydraulic fractures are well summarized and analysed. This paper can provide a reference for those engaged in the research of unstable dynamic propagation of multiple hydraulic structures and have a comprehensive grasp of the research in this field.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 September 2019

Shima Shademani, Payam Zarafshan, M. Khashehchi, M.H. Kianmehr and S.M. Hashemy

This paper aims to present a solution to dredging the irrigation canals using a robotic system. Considering the importance of irrigating water, the waste within the water canals…

Abstract

Purpose

This paper aims to present a solution to dredging the irrigation canals using a robotic system. Considering the importance of irrigating water, the waste within the water canals should be avoided. Irrigation canals are artificial linear structures in the landscape that are used for transporting the water. One important problem in water transferring is the waste materials flow inside the water, and in some areas, they block the main stream, reducing the effective capacity of the canal. Among the waste materials, aquatic plants are grown on the surface of the canal that needs to be removed from the canal. This removal operation is conducted using chemical, biological, ecological and physical methods with complex supply systems. In addition, robotic systems are used as such complex systems. So, a robotic system is proposed to dredging the irrigation canals. The assumed robot was manufactured in AGRINS laboratory of Tehran University.

Design/methodology/approach

Design procedure, dynamic modelling and simulation of this robotic system are studied. To validate the system design before its construction, ADAMS software is used to perform simulations. Finally, performance evaluation of the dredger robot in the canal is studied based on the experimental data.

Findings

Results show that the design procedure has been correctly fitted to the real condition. Therefore, the designed robot could be easily used to dredging irrigation canals.

Practical implications

The assumed robot was manufactured in AGRINS laboratory of Tehran University.

Originality/value

Performing a dredging operation in the canals could be conducted by a new technique considering both free sides of the canal. Therefore, in this paper, a conceptual design of a 3-wheels stair dredger robot is numerically and experimentally studied.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 March 2018

Jiang Chen, Junli Zheng and Feng Xiong

The spatial resolution of seepage monitoring methods based on fiber Bragg grating (FBG) temperature sensing technology is limited by the distance between measurement points…

Abstract

Purpose

The spatial resolution of seepage monitoring methods based on fiber Bragg grating (FBG) temperature sensing technology is limited by the distance between measurement points. Improving the spatial resolution for a given number of measurement points is a prerequisite for popularizing this technology in the seepage monitoring of rockfill dams. The purpose of this paper is to address this problem.

Design/methodology/approach

This paper proposes a mobile-distributed seepage monitoring method based on the FBG-hydrothermal cycling seepage monitoring system. In this method, the positions of the measurement points are changed by freely dragging the FBG sensing cluster within the inner tube of a dual-tube structure, consisting of an inner polytetrafluoroethylene tube and outer polyethylene of raised temperature resistance heating tube.

Findings

A seepage velocity calibration test was carried out using the improved monitoring system. The results showed that under a constant seepage velocity, the use of the dual-tube structure enables faster cooling, and the cooling rate accelerates with an increase in the diameter of the inner tube. The use of the dual-tube structure can improve the sensitivity of the seepage evaluation index ζv to the seepage velocity. When the inner diameter increases, ζv becomes more sensitive to the seepage velocity.

Originality/value

A mobile-distributed seepage monitoring method based on FBG sensing technology is proposed in which the FBG sensors are not fixed. Instead, the positions of the measurement points are changed to improve the spatial resolution. Meanwhile, the use of the dual-tube structure in the presented monitoring system can improve its sensitivity.

Details

Sensor Review, vol. 38 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 August 2021

Xiao Fang, Yajie Zeng, Feng Xiong, Jiang Chen and Fei Cheng

Seepage of the dam is an important safety problem, which may cause internal erosion of the structure. In the field of seepage monitoring in civil engineering, the distributed…

Abstract

Purpose

Seepage of the dam is an important safety problem, which may cause internal erosion of the structure. In the field of seepage monitoring in civil engineering, the distributed optical fiber sensing technology based on the temperature tracing method has been paid more attention due to its unique advantages of high sensitivity, good stability and high resolution. The purpose of this paper is to make a review of the existing related research, so as to facilitate the later scholars to understand and further study more systematically.

Design/methodology/approach

In this paper, three kinds of commonly used distributed fiber temperature measurement technologies are introduced. Based on the working principle, monitoring system, theoretical analysis, experimental research and engineering application of the fiber seepage monitoring technology, the present situation of dam seepage monitoring based on distributed fiber is reviewed in detail and their advantages and disadvantages are compared.

Findings

The thermal monitoring technology of seepage measurement depends on the accuracy of optical fiber temperature measurement (including the accuracy of the system and the rationality of the discrimination method), the correct installation of optical fiber and the quantitative analysis of temperature data. The accuracy of the current monitoring system can basically meet the existing measurement requirements, but the correct installation of optical fiber and the calibration of temperature data need to be further studied for different discrimination methods, and this field has great research value.

Originality/value

At present, there are many applications and research studies of optical fiber sensing in the field of structural health monitoring, and there are also reviews of related aspects. However, there is little or no review only in the field of seepage monitoring. This paper summarizes the research and application of optical fiber sensing in the field of seepage monitoring. The possibility of the gradient method to find its new prospect with the development of monitoring systems and the improvement of temperature resolution is discussed. The idea of extending the seepage monitoring method based on distributed optical fiber thermal monitoring technology to other monitoring fields is also given in the paper.

Open Access
Article
Publication date: 28 March 2023

Tianliang Wang, Ya-Meng He, Zhen Wu and Jun-jun Li

This paper aims to study the impacts of groundwater seepage on artificial freezing process of gravel strata, the temperature field characteristics of the strata, and the strata…

Abstract

Purpose

This paper aims to study the impacts of groundwater seepage on artificial freezing process of gravel strata, the temperature field characteristics of the strata, and the strata process, closure time and thickness evolution mechanism of the frozen wall.

Design/methodology/approach

In this paper several laboratory model tests were conducted, considering different groundwater seepage rate.

Findings

The results show that there is a significant coupling effect between the cold diffusion of artificial freezing pipes and groundwater seepage; when there is no seepage, temperature fields upstream and downstream of the gravel strata are symmetrically distributed, and the thickness of the frozen soil column/frozen wall is consistent during artificial freezing; groundwater seepage causes significant asymmetry in the temperature fields upstream and downstream of the gravel strata, and the greater the seepage rate, the more obvious the asymmetry; the frozen wall closure time increases linearly with the increase in the groundwater seepage rate, and specifically, the time length under seepage rate of 5.00 m d−1 is 3.2 times longer than that under no seepage; due to the erosion from groundwater seepage, the thickness of the upstream frozen wall decreases linearly with the seepage velocity, while that of the downstream frozen wall increases linearly, resulting in a saddle-shaped frozen wall.

Originality/value

The research results are beneficial to the optimum design and risk control of artificial freezing process in gravel strata.

Details

Railway Sciences, vol. 2 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 21 March 2016

Chunhong Wang, Jihong Chen, Jin Wang and Jianping Chen

Distributed temperature sensing (DTS) can identify locations and factors of seepage in embankments. Inspired by the classical transient hot-wire method (THW), the focus of this…

Abstract

Purpose

Distributed temperature sensing (DTS) can identify locations and factors of seepage in embankments. Inspired by the classical transient hot-wire method (THW), the focus of this paper is to investigate the feasibility and propose a calibrated method of seepage velocity monitoring using the optical fiber DTS.

Design/methodology/approach

According to the definition and the measurement of thermal conductivity, the nominal thermal conductivity, which comprehensively reflects the influence of heat transfer and seepage factors, is proposed and the corresponding solution is also derived. Then, a flume testing platform of an embankment seepage monitoring system composed of the optical fiber heat-up subsystem, the seepage controlling subsystem and the optical fiber DTS subsystem is designed and built. Meanwhile, the data processing and assistant analysis subsystem (DPAAS) is also developed to effectively acquire the experimental data of concerned locations and obtain the corresponding nominal thermal conductivity under various seepage conditions. Based on these setups, a series of laboratory flume experiments are carried out under controlled velocities and heating powers.

Findings

The plots of recorded temperature rise versus natural logarithm of time allow the calculation of nominal thermal conductivities, and then the seepage velocity monitoring model particular to the experimental setup is successfully established with satisfactory precision.

Research limitations/implications

Considering the complexity of water flow in embankments, a seepage flume that matches the natural system, allowing for larger experimental model scales, various water temperatures, various engineering materials and a wider range of seepage velocities, should be investigated in future.

Practical implications

The combined THW and DTS method provides promising potential in real-time seepage monitoring of embankment dams with the help of the developed DPAAS.

Originality/value

In this work, we performed a flume testing of seepage velocity monitoring platform using optical fiber distributed-temperature sensing for embankments based on the transient hot-wire method. Through the testing of data, the seepage velocity monitoring model particular to the experimental setup was established. The results presented here are very encouraging and demonstrate that the DTS system can be used to monitor the temperature and the seepage factors in field applications.

Article
Publication date: 4 January 2021

Vikram Kumar and Srivastava Granthi

The purpose of this study is to understand the basics of interactions of groundwater and surface water, which is needed for effective management of water resources.

Abstract

Purpose

The purpose of this study is to understand the basics of interactions of groundwater and surface water, which is needed for effective management of water resources.

Design/methodology/approach

The experimental setup was framed using curved flume and the straight flume, which simulates the model of river and groundwater storage, respectively. The model set up further consists, downstream, central and upstream sections where 14 observation wells, which are arranged at a measured distance from the canal side.

Findings

Exit gradient is higher at downstream when the average head differences between canal and river are 31.9 cm and 35.7 cm. Free seepage height is more in the downstream wells than upstream and central wells. At the downstream section, there is a greater chance of instability of the riverbank.

Research limitations/implications

Results will be used for better planning of hydraulic structural design.

Practical implications

Results will help in storing the large water and better irrigation planning for the water acute states and locations.

Originality/value

The originality is own developed physical model and its own first type to understand the basic of interaction and effects.

Details

World Journal of Engineering, vol. 18 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 200