Search results

1 – 10 of 168
Article
Publication date: 10 July 2023

Rui Nie, Yaqian Meng, Peixin Wang, Peng Su and Jikai Si

The purpose of this study is to calculate the normal force of a two degree of freedom direct drive induction motor considering coupling effects based on an analytical model…

Abstract

Purpose

The purpose of this study is to calculate the normal force of a two degree of freedom direct drive induction motor considering coupling effects based on an analytical model. Compared with the traditional single degree of freedom motor, normal force characteristics of two-degree-of-freedom direct drive induction motor (2DOFDDIM) is affected by coupling effect when the machine is in a helical motion. To theoretically explain the influence mechanism of coupling effect, this paper conducts a quantitative analysis of the influence of coupling effect on normal force based on the established analytical model of normal force considering coupling effect.

Design/methodology/approach

Firstly, the normal forces generated by 2DOFDDIM in linear motion, rotary motion and helical motion are investigated and compared to prove the effect of the coupling effect on the normal force. During this study, several coupling factors are established to modify the calculation equations of the normal force. Then, based on the multilayer theoretical method and Maxwell stress method, a novel normal force calculation model of 2DOFDDIM is established taking the coupling effect into account, which can easily calculate the normal force of 2DOFDDIM under different motions conditions. Finally, the calculation results are verified by the results of 3D finite element model, which proves the correctness of the established calculating model.

Findings

The coupling effect produced by the helical motion of 2DOFDDIM affects the normal force.

Originality/value

In this paper, the analytical model of the normal force of 2DOFDDIM considering the coupling effect is established, which provides a fast calculation for the design of the motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 December 2021

Mohammad Reza Khalilnezhad and Dak Kopec

This study aims to assess each of the seven segments of the Akbarieh Garden as the World Heritage Cultural Landscape. First, we wanted to identify the macro elements that…

Abstract

Purpose

This study aims to assess each of the seven segments of the Akbarieh Garden as the World Heritage Cultural Landscape. First, we wanted to identify the macro elements that dominated one's perception within each area. Then, we wanted to identify the micro elements that support the vista in its entirety.

Design/methodology/approach

To acquire data, we used a Participant Observer (PO) method as part of a Continuous/Stop-Motion (CSM) procedure. The identification of macro elements came from retrospective recollections derived from the continuous walk method—the stop-walk method allowed for the identification of micro elements. The data gained from this method is then used to understand how one interprets and responds to large—multi-segmented sites such as the Akbarieh Garden.

Findings

The results of this study show the Continuous/Stop-Motion method yielded predictable results with macro elements and elements of interest being easily recalled. However, the use of photographing for the stop-walk method revealed a similar focus on the macro element. We had hypothesized that the micro elements would be the elements of fascination and discovered when the person remained in the area to photograph scenes of interest. However, the PO photographed the macro elements. It wasn't until the post photo analysis that the PO identified some of the micro elements would be the elements of fascination and discovered when the person remained in the area to photograph scenes of interest. However, the PO photographed the macro elements. It wasn't until the post photo analysis that the PO identified some of the micro elements. The post photo discoveries suggest that real-time experience of micro elements is undervalued.

Originality/value

There is no general discussion on this topic yet amongst professionals. The initiative of the Participant Observer (PO) method as a tool for perception the historic gardens and landscapes identified that gap and its related necessity to provide guidance. As is true for exploratory studies, these results provide a foundation for further study. The use of the Continuous/Stop-Motion method was ideal for this study.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 13 no. 4
Type: Research Article
ISSN: 2044-1266

Keywords

Open Access
Article
Publication date: 25 April 2023

Maria Cleofe Giorgino

This paper aims to inform the discussion on why and how non-profit organizations can experience a hybridization process to address the criticism that would assume hybridity as an…

Abstract

Purpose

This paper aims to inform the discussion on why and how non-profit organizations can experience a hybridization process to address the criticism that would assume hybridity as an intrinsic characteristic of all organizations. Specifically, by referring to the academies of intellectuals as the non-profit setting in which investigating the emergence of hybridity takes place, this paper aims at exploring, first, to what extent this emergence could be induced by institutional conditions, and, second, which structural innovations could sustain the academies’ “motion” towards hybridity.

Design/methodology/approach

This paper relies on the institutional logics perspective and adopts the case study method applied to a historical context. The case under analysis is the Academy of “the Immobili”, which, in spite of its name, experienced a hybridization process in 1720 because of the decision to involve an impresario in the management of its theatre.

Findings

The findings highlight the significant role played by institutional conditions in inducing the emergence of hybridity, even in presence of internal resistance to any “motion” from the non-profit setting. Moreover, the analysis of the innovations associated with this emergence detects the intertwined action of the different decision makers involved in the hybridization process, in spite of their formal separation. These findings strengthen the conceptualization of hybridity within non-profit organizations.

Originality/value

Besides referring to a historical period that is still little explored in terms of hybridity within organizations, the paper focuses on an original context, i.e. academies, representing an ancient typology of cultural organizations. Therefore, the paper also provides the first insights into the hybridization process of cultural organizations from a historical perspective.

Details

Journal of Management History, vol. 30 no. 1
Type: Research Article
ISSN: 1751-1348

Keywords

Article
Publication date: 5 September 2023

Xinyu Zhang and Liling Ge

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body and quality evaluation. This paper aims to discuss the…

Abstract

Purpose

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body and quality evaluation. This paper aims to discuss the aforementioned idea.

Design/methodology/approach

First, the differential body is set on a rotation platform before measuring. Then one laser sensor called as “primary sensor”, is installed on the intern of the differential body. The spherical surface and four holes on the differential body are sampled by the primary sensor when the rotation platform rotates one revolution. Another sensor called as “secondary sensor”, is installed above to sample the external cylinder surface and the planar surface on the top of the differential body, and the external cylinder surface and the planar surface are high in manufacturing precision, which are used as datum surfaces to compute the errors caused by the motion of the rotation platform. Finally, the sampled points from the primary sensor are compensated to improve the measurement accuracy.

Findings

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body. Based on the characteristics of the measurement data, a gradient image-based method is proposed to distinguish different objects from laser measurement data. A case study is presented to validate the measurement principle and data processing approach.

Research limitations/implications

The study investigates the possibility of correction of sensor data by the measurement results of multiple sensors to improving measurement accuracy. The proposed technique enables the error analysis and compensation by the geometric correlation relationship of various features on the measurand.

Originality/value

The proposed error compensation principle by using multiple sensors proved to be useful for the design of new measurement device for special part inspection. The proposed approach to describe the measuring data by image also is proved to be useful to simplify the measurement data processing.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 February 2024

Karthikeyan Paramanandam, Venkatachalapathy S, Balamurugan Srinivasan and Nanda Kishore P V R

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary…

Abstract

Purpose

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary flows on the pressure drop and heat transfer capabilities at different Reynolds numbers are investigated numerically for different wavy microchannels. Finally, different channels are evaluated using performance evaluation criteria to determine their effectiveness.

Design/methodology/approach

To investigate the flow and heat transfer capabilities in wavy microchannels having secondary branches, a 3D conjugate heat transfer model based on finite volume method is used. In conventional wavy microchannel, secondary branches are introduced at crest and trough locations. For the numerical simulation, a single symmetrical channel is used to minimize computational time and resources and the flow within the channels remains single-phase and laminar.

Findings

The findings indicate that the suggested secondary channels notably improve heat transfer and decrease pressure drop within the channels. At lower flow rates, the secondary channels demonstrate superior performance in terms of heat transfer. However, the performance declines as the flow rate increased. With the same amplitude and wavelength, the introduction of secondary channels reduces the pressure drop compared with conventional wavy channels. Due to the presence of secondary channels, the flow splits from the main channel, and part of the core flow gets diverted into the secondary channel as the flow takes the path of minimum resistance. Due to this flow split, the core velocity is reduced. An increase in flow area helps in reducing pressure drop.

Practical implications

Many complex and intricate microchannels are proposed by the researchers to augment heat dissipation. There are challenges in the fabrication of microchannels, such as surface finish and achieving the required dimensions. However, due to the recent developments in metal additive manufacturing and microfabrication techniques, the complex shapes proposed in this paper are feasible to fabricate.

Originality/value

Wavy channels are widely used in heat transfer and micro-fluidics applications. The proposed wavy microchannels with secondary channels are different when compared to conventional wavy channels and can be used practically to solve thermal challenges. They help achieve a lower pressure drop in wavy microchannels without compromising heat transfer performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 November 2023

Arun G. Nair, Tide P.S. and Bhasi A.B.

The mixing of fuel and air plays a pivotal role in enhancing combustion in supersonic regime. Proper mixing stabilizes the flame and prevents blow-off. Blow-off is due to the…

Abstract

Purpose

The mixing of fuel and air plays a pivotal role in enhancing combustion in supersonic regime. Proper mixing stabilizes the flame and prevents blow-off. Blow-off is due to the shorter residence time of fuel and air in the combustor, as the flow is in supersonic regime. The flame is initiated in the local subsonic region created using a flameholder within the supersonic combustor. This study aims to design an effective flameholder which increases the residence time of fuel in the combustor allowing proper combustion preventing blow-off and other instabilities.

Design/methodology/approach

The geometry of the strut-based flameholder is altered in the present study to induce a streamwise motion of the fluid downstream of the strut. The streamwise motion of the fluid is initiated by the ramps and grooves of the strut geometry. The numerical simulations were carried out using ANSYS Fluent and are validated against the available experimental and numerical results of cold flow with hydrogen injection using plain strut as the flameholder. In the present study, numerical investigations are performed to analyse the effect on hydrogen injection in strut-based flameholders with ramps and converging grooves using Reynolds-averaged Navier–Stokes equation coupled with Menter’s shear stress transport k-ω turbulence model. The analysis is done to determine the effect of geometrical parameters and flow parameter on the flow structures near the base of the strut where thorough mixing takes place. The geometrical parameters under consideration include the ramp length, groove convergence angle, depth of the groove, groove compression angle and the Mach number. Two different strut configurations, namely, symmetric and asymmetric struts were also studied.

Findings

Higher turbulence and complex flow structures are visible in asymmetric strut configuration which develops better mixing of hydrogen and air compared to symmetric strut configuration. The variation in the geometric parameters develop changes in the fluid motion downstream of the strut. The fluid passing through the converging grooves gets decelerated thereby reducing the Mach number by 20% near the base of the strut compared to the straight grooved strut. The shorter ramps are found to be more effective, as the pressure variation in lateral direction is carried along the strut walls downstream of the strut increasing the streamwise motion of the fluid. The decrease in the depth of the groove increases the recirculation zone downstream of the strut. Moreover, the increase in the groove compression angle also increases the turbulence near the base of the strut where the fuel is injected. Variation in the injection port location increases the mixing performance of the combustor by 25%. The turbulence of the fuel jet stream is considerably changed by the increase in the injection velocity. However, the change in the flow field properties within the flow domain is marginal. The increase in fuel mass flow rate brings about considerable change in the flow field inducing stronger shock structures.

Originality/value

The present study identifies the optimum geometry of the strut-based flameholder with ramps and converging grooves. The reaction flow modelling may be performed on the strut geometry incorporating the design features obtained in the present study.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 22 March 2024

Geming Zhang, Lin Yang and Wenxiang Jiang

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is…

Abstract

Purpose

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is based on P-wave earthquake early-warning and multiple ways of rapid treatment.

Design/methodology/approach

The paper describes the key technologies that are involved in the development of the system, such as P-wave identification and earthquake early-warning, multi-source seismic information fusion and earthquake emergency treatment technologies. The paper also presents the test results of the system, which show that it has complete functions and its major performance indicators meet the design requirements.

Findings

The study demonstrates that the high speed railways earthquake early-warning system serves as an important technical tool for high speed railways to cope with the threat of earthquake to the operation safety. The key technical indicators of the system have excellent performance: The first report time of the P-wave is less than three seconds. From the first arrival of P-wave to the beginning of train braking, the total delay of onboard emergency treatment is 3.63 seconds under 95% probability. The average total delay for power failures triggered by substations is 3.3 seconds.

Originality/value

The paper provides a valuable reference for the research and development of earthquake early-warning system for high speed railways in other countries and regions. It also contributes to the earthquake prevention and disaster reduction efforts.

Article
Publication date: 16 January 2024

Longchang Zhang, Qi Chen, Yanguo Yin, Hui Song and Jun Tang

Gears are prone to instantaneous failure when operating under extreme conditions, affecting the machinery’s service life. With numerous types of gear meshing and complex operating…

87

Abstract

Purpose

Gears are prone to instantaneous failure when operating under extreme conditions, affecting the machinery’s service life. With numerous types of gear meshing and complex operating conditions, this study focuses on the gear–rack mechanism. This study aims to analyze the effects and optimization of biomimetic texture parameters on the line contact tribological behavior of gear–rack mechanisms under starvation lubrication conditions.

Design/methodology/approach

Inspired by the microstructure of shark skin surface, a diamond-shaped biomimetic texture was designed to improve the tribological performance of gear–rack mechanism under starved lubrication conditions. The line contact meshing process of gear–rack mechanisms under lubrication-deficient conditions was simulated by using a block-on-ring test. Using the response surface method, this paper analyzed the effects of bionic texture parameters (width, depth and spacing) on the tribological performance (friction coefficient and wear amount) of tested samples under line contact and starved lubrication conditions.

Findings

The experimental results show an optimal proportional relationship between the texture parameters, which made the tribological performance of the tested samples the best. The texture parameters were optimized by using the main objective function method, and the preferred combination of parameters was a width of 69 µm, depth of 24 µm and spacing of 1,162 µm.

Originality/value

The research results have practical guiding significance for designing line contact motion pairs surface texture and provide a theoretical basis for optimizing line contact motion pairs tribological performance under extreme working conditions.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 December 2023

Priyadharsini Sivaraj and Sivaraj Chinnasamy

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both…

Abstract

Purpose

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both isothermal and capable of producing heat. A time-dependent non-linear partial differential equation is used to represent the transfer of heat through a solid body. The current study’s objective is to investigate the key properties of nanoparticles, external forces and particular attention paid to the impact of hybrid nanoparticles on entropy formation. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates. Hybrid nanofluid has been proven to have useful qualities, making it an attractive coolant for an electrical device. The findings would help scientists and engineers better understand how to analyse convective heat transmission and how to forecast better heat transfer rates in cutting-edge technological systems used in industries such as heat transportation, power generation, chemical production and passive cooling systems for electronic devices.

Design/methodology/approach

Thermal transmission and entropy generation of hybrid nanofluid are analysed within the enclosure. The domain of interest is a square chamber of size L, including a square solid block. The solid body is considered to be isothermal and generating heat. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the SIMPLE algorithm on a uniformly staggered mesh. QUICK and central difference schemes were used to handle convective and diffusive elements. In-house code is developed using FORTRAN programming to visualize the isotherms, streamlines, heatlines and entropy contours, which are handled by Tecplot software. The influence of nanoparticles volume fraction, heat generation factor, external magnetic forces and an irreversibility ratio on energy transport and flow patterns is examined.

Findings

The results show that the hybrid nanoparticles concentration augments the thermal transmission and the entropy production increases also while the augmentation of temperature difference results in a diminution of entropy production. Finally, magnetic force has the significant impact on heat transfer, isotherms, streamlines and entropy. It has been observed that the external magnetic force plays a good role in thermal regulations.

Research limitations/implications

Hybrid nanofluid is a desirable coolant for an electrical device. Various nanoparticles and their combinations can be analysed. Ferro-copper hybrid nanofluid considered with the help of prevailing literature review. The research would benefit scientists and engineers by improving their comprehension of how to analyses convective heat transmission and forecast more accurate heat transfer rates in various fields.

Practical implications

Due to its helpful characteristics, ferrous-copper hybrid nanofluid is a desirable coolant for an electrical device. The research would benefit scientists and engineers by improving their comprehension of how to analyse convective heat transmission and forecast more accurate heat transfer rates in cutting-edge technological systems used in sectors like thermal transportation, cooling systems for electronic devices, etc.

Social implications

Entropy generation is used for an evaluation of the system’s performance, which is an indicator of optimal design. Hence, in recent times, it does a good engineering sense to draw attention to irreversibility under magnetic force, and it has an indispensable impact on investigation of electronic devices.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyse convective energy transport and entropy generation in a chamber with internal block, which is capable of maintaining heat and producing heat. Effects of irreversibility ratio are scrutinized for the first time. Analysis of convective heat transfer and entropy production in an enclosure with internal isothermal/heat generating blocks gives the way to predict enhanced heat transfer rate and avoid the failure of advanced technical systems in industrial sectors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

Last 6 months (168)

Content type

Article (168)
1 – 10 of 168