Search results

1 – 10 of 614
Article
Publication date: 13 June 2023

M. Hassanein, M. Abd El Rahm, H. M. Abd El Bary and H. Abd El-Wahab

This paper aims to study the physical and chemical characteristics of inkjet titanium dioxide inks for cotton fabric digital printing.

Abstract

Purpose

This paper aims to study the physical and chemical characteristics of inkjet titanium dioxide inks for cotton fabric digital printing.

Design/methodology/approach

Different dispersing agents through the reaction of glycerol monooleate and toluene diisocyanate were prepared and then performed by using three different polyols (succinic anhydride-modified polyethylene glycol PEG 600, EO/PO Polyether Monoamine and p-chloro aniline Polyether Monoamine), to obtain three different dispersing agents for water-based titanium dioxide inkjet inks. The prepared dispersants were characterized using FTIR to monitor the reaction progress. Then the prepared dispersants were formulated in titanium dioxide inkjet inks formulation and characterized by particle size, dynamic surface tension, transmission electron microscopy, viscosity and zeta potential against commercial dispersants. Also, the study was extended to evaluate the printed polyester by using the prepared inks according to washing and crock fastness.

Findings

The obtained results showed that p-chloro aniline Polyether Monoamine (J) and succinic anhydride modified polyethylene glycol PEG 600 (H) dispersants provided optimum performance as compared to commercial standards especially, particle size distribution data while EO/PO Polyether Monoamine based on dispersant was against and then failed with the wettability and dispersion stability tests.

Practical implications

These ink formulations could be used for printing on cotton fabric by DTG technique of printing and can be used for other types of fabrics.

Originality/value

The newly prepared ink formulation for digital textile printing based on synthesized polyurethane prepolymers has the potential to be promising in this type of printing inks, to prevent clogging of nozzles on the printhead and to improve the print quality on the textile fiber.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 February 2024

Nagla Elshemy, Mona Ali and Reem Nofal

The purpose of this study is to successfully apply ultrasonic waves for the quick extraction of flax seed gum from flaxseed hull or whole seed and compare it to the standard…

30

Abstract

Purpose

The purpose of this study is to successfully apply ultrasonic waves for the quick extraction of flax seed gum from flaxseed hull or whole seed and compare it to the standard technique of extraction.

Design/methodology/approach

The effect of the heating source, extracted time, temperature and pH of extracted solution on the extraction was studied. The obtained gum is subsequently used for silk screen printing on cotton, linen and viscous fabrics. Rheological properties and viscosity of the printing paste were scrutinized in the current study to get a better insight into this important polysaccharide. The output of this effort aimed to specify the parameters of the processes for printing textiles to serve in women’s fashion clothes by applying innovated handmade combinations of Islamic art motives using a quick and affordable method. Seven designs are executed, and inspiring from them, seven fashion designs of ladies’ clothes were designed virtually by Clo 3D software.

Findings

The result recorded that the new gum has excellent printing properties. In addition, they have better rheological properties, viscosity, chromatic strength and fastness qualities, all of which could help them in commercial production.

Research limitations/implications

Flaxseed and three different fabric types (Cotton, Linen and Viscous) were used.

Practical implications

Synthesis of a new biodegradable thickener from a natural resource, namely, flaxseed, by applying new technology to save time, water and energy.

Originality/value

Synthesis of eco-friendly biodegradable thickener and used in textile printing alternative to the synthetic thickener.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 January 2024

Gobikannan Tamilmani, Venkhatesan D., Santhosh P., Tamilselvan M., Suryappa Jayappa Pawar and Amin Hirenbhai Navinbhai

This paper aims to study the combination of photochromic microcapsules, which use the ultraviolet (UV) rays for colour changing phenomena, and titanium oxide (TiO2) nanoparticles…

73

Abstract

Purpose

This paper aims to study the combination of photochromic microcapsules, which use the ultraviolet (UV) rays for colour changing phenomena, and titanium oxide (TiO2) nanoparticles (NPs), which block the UV rays by their photocatalytic activity in the sunlight on the cotton fabric.

Design/methodology/approach

The TiO2 NPs mixed with photochromic printing paste are used for coating on cotton fabric and further curing is performed in a one-step process. The photochromic pigment printed fabric impregnated in a liquid solution is processed in a two-step process with two variables such as 1% TiO2 and 2% TiO2. The characterization of samples was done with a UV transmittance analyser, surface contact angle, antimicrobial test and fabric physical properties.

Findings

The UV protection of TiO2-treated photochromic printed fabric was high and gives the ultraviolet protection factor rating of 2,000 which denotes almost maximum blocking of UV rays. The antibacterial activity of the one-step samples shows the highest 36 mm zone of inhibition (ZOI) against S. aureus (gram-positive) and 32 mm ZOI against E. coli (gram-negative) bacteria. The one-step sample shows the highest static water contact angle of 118.6° representing more hydrophobicity, whereas the untreated fabric is fully wetted (0.4°). In two-step processes, as the concentration of TiO2 increased, the antibacterial activity, UV blocking and hydrophobicity became better.

Originality/value

This work achieves the multifunctional finishes by using photochromic microcapsules and NPs in a single process as a first attempt. The results inferred that one-step sample has achieved higher values in most of the tests conducted when compared to all other sample.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 October 2023

Raphael Kanyire Seidu, Benjamin Eghan, Emmanuel Abankwah Ofori, George Kwame Fobiri, Alex Osei Afriyie and Richard Acquaye

The purpose of this study is to investigate the physical, ultraviolet (UV), colour appearance and colour fastness properties of selected fabrics dyed with natural dyes from Daboya…

Abstract

Purpose

The purpose of this study is to investigate the physical, ultraviolet (UV), colour appearance and colour fastness properties of selected fabrics dyed with natural dyes from Daboya and Ntonso communities of Ghana. The study further highlights the rich cultural heritage of traditional dyeing from these two communities. Craftsmen in West Africa especially Ghana, have sustained the traditional dyeing methods to produce textile products for consumers.

Design/methodology/approach

In this study, two sample fabrics were purchased from craftsmen at Ntonso and Daboya communities in Ghana. These fabrics were analysed at the laboratory under standard test methods for their physical, UV, colour appearance and colour fastness properties.

Findings

Results showed that all the sample fabrics have good UV shielding performance (ratings above 50+). Daboya sample fabrics (dyed with indigo dyes) produced more colour stains than the sample fabrics from Ntonso (dyed with black “kuntunkuni” dyes). The K/Ssum value or colour yield reduced after washing but that alternatively increased the calculated ultraviolet protection factor.

Practical implications

Findings from this study exposed the unique UV performance of dyed traditional fabrics (using natural dyes) from Ntonso and Daboya communities in Ghana. This inspires and enforces the need for craftsmen to improve their production cycle to produce these fabrics in different sizes which provides the necessary UV shielding abilities for consumers in the wake of climate changes.

Originality/value

This study demonstrated that the natural dyeing process at the two communities produced relatively good UV and colour fastness properties of the sample fabrics. These eco-friendly dyeing practices have survived over time to maintain and promote the concept of sustainability within the textile and fashion industry in Ghana.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 13 November 2023

Christina Zacharia Hawatmeh, Oraib Mousa Alshmaseen and Ghada Enad Alfayez

The purpose of this study is to investigate the reasons behind the persistent preference for printed content among Arabic-speaking library patrons in Jordan. Specifically, this…

Abstract

Purpose

The purpose of this study is to investigate the reasons behind the persistent preference for printed content among Arabic-speaking library patrons in Jordan. Specifically, this study highlights the availability of reading materials in print, electronic and audible formats in Arabic as an intervening factor shaping reading behavior. More broadly, it aims to contribute to a deeper understanding of how language preference can impact reading format preferences.

Design/methodology/approach

This study’s research design revolves around understanding reading format preferences among registered members of Jordan’s largest and oldest private library. This approach involved the examination of secondary library user survey data collected from N = 313 of its patrons in 2022. To gain a greater understanding of the preference for printed materials, this study conducted semistructured interviews over the phone with n = 31 participants of the library’s survey.

Findings

The findings of this study indicate a strong preference for print books among Arabic-speaking library patrons in Jordan. However, the availability of content in electronic and audible formats in Arabic, their preferred reading language, emerged as a potentially significant factor in the persistent preference for printed reading materials.

Originality/value

This study offers new insights into the specific role that the availability of content in Arabic, and possibly languages other than English, may play in shaping reading format preferences. By shedding light on this aspect of reading behavior, this research offers valuable information for libraries and publishers seeking to cater to the needs and preferences of Arabic readers.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 April 2024

Adhithya Sreeram and Jayaraman Kathirvelan

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type…

Abstract

Purpose

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type of fruit ripening involved at the vendors’ side, there is a great demand for on-sight ethylene detection in a nondestructive manner. Therefore, this study aims to deal with a comparison of various laboratory and portable methods developed so far with high-performance metrics to identify the ethylene detection at fruit ripening site.

Design/methodology/approach

This paper focuses on various types of technologies proposed up to date in ethylene detection, fabrication methods and signal conditioning circuits for ethylene detection in parts per million and parts per billion levels. The authors have already developed an infrared (IR) sensor to detect ethylene and also developed a lab-based setup belonging to the electrochemical sensing methods to detect ethylene for the fruit ripening application.

Findings

The authors have developed an electrochemical sensor based on multi-walled carbon nanotubes whose performance is relatively higher than the sensors that were previously reported in terms of material, sensitivity and selectivity. For identifying the best sensing technology for optimization of ethylene detection for fruit ripening discrimination process, authors have developed an IR-based ethylene sensor and also semiconducting metal-oxide ethylene sensor which are all compared with literature-based comparable parameters. This review paper mainly focuses on the potential possibilities for developing portable ethylene sensing devices for investigation applications.

Originality/value

The authors have elaborately discussed the new chemical and physical methods of ethylene detection and quantification from their own developed methods and also the key findings of the methods proposed by fellow researchers working on this field. The authors would like to declare that the extensive analysis carried out in this technical survey could be used for developing a cost-effective and high-performance portable ethylene sensing device for fruit ripening and discrimination applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 April 2023

Guillermo Monrós, Mario Llusar and José Antonio Badenes

The purpose of this study is the synthesis and characterization of a CMYK palette (cyan of Cr-BiVO4, magenta of Pr-CeO2, yellow of Bi-(Ce,Zr)O2 composite and black of YMnO3) as an…

Abstract

Purpose

The purpose of this study is the synthesis and characterization of a CMYK palette (cyan of Cr-BiVO4, magenta of Pr-CeO2, yellow of Bi-(Ce,Zr)O2 composite and black of YMnO3) as an eco-friendly polyfunctional palette that combines (a) high near-infrared reflectance (cool pigments) that allows moderate temperatures in indoor environments and the urban heat island effect; (b) photocatalytic activity for the degradation of organic contaminants of emerging concern of substrates in solution (such as Orange II or methylene blue) and gaseous (NOx and volatile organic compounds such as acetaldehyde or toluene); (c) X-ray radiation attenuators associated with bismuth ions; and (d) biocidal effect combined with co-doping with bactericidal agents.

Design/methodology/approach

Pigments were prepared by a solid-state reaction and characterized by X-ray diffraction, diffuse reflectance spectroscopy, photocatalytic activity over Orange II and scanning electron microscopy.

Findings

The behaviour of the proposed palette was compared to that of a commercial inkjet palette, and an improvement in all functionalities was observed.

Social implications

The functionalities of pigments allow the building envelope and indoor walls to exhibit temperature-moderating effects (with the additional effects of moderating global warming and increasing air conditioning efficiency), purification and disinfection of both indoor and outdoor air, and radiation attenuation.

Originality/value

The proposed palette and its polyfunctional characterization are novel.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 27 February 2023

Ali A. Ali, H. Abd El-Wahab, Moustafa S. Abusaif, Ahmed Ragab, Omar A. Abdel-Jaid, E.A. Eldeeb and Yousry A. Ammar

The paper aims to the preparation of novel disperse dye based on azo salicylaldehyde derivatives TF-A [2-hydroxy-5-((3-(trifluoromethyl)phenyl)diazenyl)benzaldehyde] and full…

Abstract

Purpose

The paper aims to the preparation of novel disperse dye based on azo salicylaldehyde derivatives TF-A [2-hydroxy-5-((3-(trifluoromethyl)phenyl)diazenyl)benzaldehyde] and full evaluation of their use as disperse dye TF-ASC [bis 2-hydroxy-5-((3-(trifluoromethyl)phenyl)diazenyl)benzaldehyde Schiff base with 4,4'-methylenedianiline] for dyeing polyester fabric at various conditions.

Design/methodology/approach

The dispersed dye was synthesized via Schiff base condensation in the presence of ceric ammonium nitrate cerium ammonium nitrate 10 mmole% as an eco-friendly catalyst at room temperature. The chemical structure of the prepared dye was characterized via elemental analysis, Fourier-transform infrared spectroscopy, 1H- and 13 C-NMR spectroscopic analysis tools. This study thoroughly examined the dyeing of disperse dye TF-ASC on polyester at various conditions. The characteristics of dyed polyester fabric were measured by colour measurements, as well as light, washing, crock fastness and finally, colour strength. The discrete fourier transform (DFT) theoretical studies, including EHOMO, ELUMO and optimized geometrical structure, were assumed and discussed in detail.

Findings

The results showed that the synthesized organic dye TF-ASC was highly functional and appropriate for this kind of dyeing method. The dyeing fabrics obtained from disperse dye TF-ASC, properties possess high colour strength as well as good overall fastness properties. These dyes had a high affinity for polyester fabric, with just a tiny change in dye affinity when the pH was changed, even under alkaline circumstances. The dye levelness and shade depth of the colour results were good, and there were a variety of hues from light brownish yellow to deep brownish yellow. The results obtained from DFT computational studies such as EHOMO, ELUMO, optimized structure, diploe moment µ and electrophilicity index deduced that prepared organic dye TF-ASC is more applicable as a dispersed dye.

Originality/value

This research is significant because it provides a new dye for dyeing polyethylene terephthalate fibres with exceptional brightness and levelness; the method of preparation is a useful pathway due to its being known as a green chemistry method.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 614