Search results

1 – 10 of 107
Article
Publication date: 10 January 2024

Sara El-Ateif, Ali Idri and José Luis Fernández-Alemán

COVID-19 continues to spread, and cause increasing deaths. Physicians diagnose COVID-19 using not only real-time polymerase chain reaction but also the computed tomography (CT…

Abstract

Purpose

COVID-19 continues to spread, and cause increasing deaths. Physicians diagnose COVID-19 using not only real-time polymerase chain reaction but also the computed tomography (CT) and chest x-ray (CXR) modalities, depending on the stage of infection. However, with so many patients and so few doctors, it has become difficult to keep abreast of the disease. Deep learning models have been developed in order to assist in this respect, and vision transformers are currently state-of-the-art methods, but most techniques currently focus only on one modality (CXR).

Design/methodology/approach

This work aims to leverage the benefits of both CT and CXR to improve COVID-19 diagnosis. This paper studies the differences between using convolutional MobileNetV2, ViT DeiT and Swin Transformer models when training from scratch and pretraining on the MedNIST medical dataset rather than the ImageNet dataset of natural images. The comparison is made by reporting six performance metrics, the Scott–Knott Effect Size Difference, Wilcoxon statistical test and the Borda Count method. We also use the Grad-CAM algorithm to study the model's interpretability. Finally, the model's robustness is tested by evaluating it on Gaussian noised images.

Findings

Although pretrained MobileNetV2 was the best model in terms of performance, the best model in terms of performance, interpretability, and robustness to noise is the trained from scratch Swin Transformer using the CXR (accuracy = 93.21 per cent) and CT (accuracy = 94.14 per cent) modalities.

Originality/value

Models compared are pretrained on MedNIST and leverage both the CT and CXR modalities.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 23 January 2024

Wang Zhang, Lizhe Fan, Yanbin Guo, Weihua Liu and Chao Ding

The purpose of this study is to establish a method for accurately extracting torch and seam features. This will improve the quality of narrow gap welding. An adaptive deflection…

Abstract

Purpose

The purpose of this study is to establish a method for accurately extracting torch and seam features. This will improve the quality of narrow gap welding. An adaptive deflection correction system based on passive light vision sensors was designed using the Halcon software from MVtec Germany as a platform.

Design/methodology/approach

This paper proposes an adaptive correction system for welding guns and seams divided into image calibration and feature extraction. In the image calibration method, the field of view distortion because of the position of the camera is resolved using image calibration techniques. In the feature extraction method, clear features of the weld gun and weld seam are accurately extracted after processing using algorithms such as impact filtering, subpixel (XLD), Gaussian Laplacian and sense region for the weld gun and weld seam. The gun and weld seam centers are accurately fitted using least squares. After calculating the deviation values, the error values are monitored, and error correction is achieved by programmable logic controller (PLC) control. Finally, experimental verification and analysis of the tracking errors are carried out.

Findings

The results show that the system achieves great results in dealing with camera aberrations. Weld gun features can be effectively and accurately identified. The difference between a scratch and a weld is effectively distinguished. The system accurately detects the center features of the torch and weld and controls the correction error to within 0.3mm.

Originality/value

An adaptive correction system based on a passive light vision sensor is designed which corrects the field-of-view distortion caused by the camera’s position deviation. Differences in features between scratches and welds are distinguished, and image features are effectively extracted. The final system weld error is controlled to 0.3 mm.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 April 2024

Tao Pang, Wenwen Xiao, Yilin Liu, Tao Wang, Jie Liu and Mingke Gao

This paper aims to study the agent learning from expert demonstration data while incorporating reinforcement learning (RL), which enables the agent to break through the…

Abstract

Purpose

This paper aims to study the agent learning from expert demonstration data while incorporating reinforcement learning (RL), which enables the agent to break through the limitations of expert demonstration data and reduces the dimensionality of the agent’s exploration space to speed up the training convergence rate.

Design/methodology/approach

Firstly, the decay weight function is set in the objective function of the agent’s training to combine both types of methods, and both RL and imitation learning (IL) are considered to guide the agent's behavior when updating the policy. Second, this study designs a coupling utilization method between the demonstration trajectory and the training experience, so that samples from both aspects can be combined during the agent’s learning process, and the utilization rate of the data and the agent’s learning speed can be improved.

Findings

The method is superior to other algorithms in terms of convergence speed and decision stability, avoiding training from scratch for reward values, and breaking through the restrictions brought by demonstration data.

Originality/value

The agent can adapt to dynamic scenes through exploration and trial-and-error mechanisms based on the experience of demonstrating trajectories. The demonstration data set used in IL and the experience samples obtained in the process of RL are coupled and used to improve the data utilization efficiency and the generalization ability of the agent.

Details

International Journal of Web Information Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1744-0084

Keywords

Open Access
Article
Publication date: 9 April 2024

Patrice Silver, Juliann Dupuis, Rachel E. Durham, Ryan Schaaf, Lisa Pallett and Lauren Watson

In 2022, the Baltimore professional development school (PDS) partner schools, John Ruhruh Elementary/Middle School (JREMS) and Notre Dame of Maryland University (NDMU) received…

Abstract

Purpose

In 2022, the Baltimore professional development school (PDS) partner schools, John Ruhruh Elementary/Middle School (JREMS) and Notre Dame of Maryland University (NDMU) received funds through a Maryland Educational Emergency Revitalization (MEER) grant to determine (a) to what extent additional resources and professional development would increase JREMS teachers’ efficacy in technology integration and (b) to what extent NDMU professional development in the form of workshops and self-paced computer science modules would result in greater use of technology in the JREMS K-8 classrooms. Results indicated a statistically significant improvement in both teacher comfort with technology and integrated use of technology in instruction.

Design/methodology/approach

Survey data were collected on teacher-stated comfort with technology before and after grant implementation. Teachers’ use of technology was also measured by unannounced classroom visits by administration before and after the grant implementation and through artifacts teachers submitted during NDMU professional development modules.

Findings

Results showing significant increases in self-efficacy with technology along with teacher integration of technology exemplify the benefits of a PDS partnership.

Originality/value

This initiative was original in its approach to teacher development by replacing required teacher professional development with an invitation to participate and an incentive for participation (a personal MacBook) that met the stated needs of teachers. Teacher motivation was strong because teammates in a strong PDS partnership provided the necessary supports to induce changes in teacher self-efficacy.

Details

School-University Partnerships, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1935-7125

Keywords

Article
Publication date: 24 April 2024

Yuhong Li, Hang Gao and Xiaokun Yu

This study aims to increase the novelty of clothing design and fabric texture. The element library that can be used for design is systematically summarized. The element database…

Abstract

Purpose

This study aims to increase the novelty of clothing design and fabric texture. The element library that can be used for design is systematically summarized. The element database can also be continuously filled according to the existing logic to realize the diversity of design. Improve the theory of fashion design, expand the designer's design ideas and improve design efficiency. Clear design steps and logic can help students and machines learn the design process and promote the development of intelligent design. And verify the feasibility of the simulation software to assist pleated clothing design.

Design/methodology/approach

Firstly, according to the logical framework of origami theory, different innovative designs and combined designs are made for the basic units of hyperbolic paraboloid, and the element library that can be used for design is systematically summarized. This database can also be continuously filled according to the existing logic to realize the diversity of design. Secondly, it summarizes three methods of pleated element filling clothing – uniform filling method, the irregular filling method and geometric addition method – that improve the theory of fashion design, expand the designer's design ideas and improve design efficiency. Clear design steps and logic can help students and machines learn the design process and promote the development of intelligent design. Finally, the virtual software is used to simulate the effect of pleated clothing, and the three-dimensional simulation software 3dclo is used to make an empirical study on the application of hyperbolic paraboloid origami in clothing pleated design to verify the feasibility of the simulation software to assist pleated clothing design.

Findings

The theoretical results of hyperbolic paraboloid origami are collected and arranged to establish the element library of hyperbolic paraboloid origami. The results expand the designer's design ideas and auxiliary design technology and improve the design efficiency using a sample of hyperbolic paraboloid fabric to verify its practicability and three-dimensional clothing simulation software for exploring the design. The design rules of hyperbolic paraboloid clothing and the realization method of fabric are summarized, including the expansion and combing of elements, the application of size and shape and the method of combination.

Research limitations/implications

Owing to the hyperbolic paraboloid origami’s length shrinkage, the loose computation of clothing requires targeted computation. This paper solely applies a paper model for estimating the shrinkage, and then we tend to subsequently explore the way to precisely compute the porosity, to determine the existing differences in the two-dimensional shrinkage of hyperbolic paraboloid creases of varying materials and to know if the clothing after large-scale production is capable of reaching the anticipated value.

Practical implications

The exploration of this experiment brings a new 3D experiment process to the design process.

Social implications

This experiment brings new possibilities for the development of virtual fitting and virtual display in the industry.

Originality/value

This study combines hyperbolic paraboloid origami and clothing and combs and expands the unit with logical thinking to expand the designer's design ideas.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 March 2024

Nehemia Sugianto, Dian Tjondronegoro and Golam Sorwar

This study proposes a collaborative federated learning (CFL) framework to address personal data transmission and retention issues for artificial intelligence (AI)-enabled video…

Abstract

Purpose

This study proposes a collaborative federated learning (CFL) framework to address personal data transmission and retention issues for artificial intelligence (AI)-enabled video surveillance in public spaces.

Design/methodology/approach

This study examines specific challenges for long-term people monitoring in public spaces and defines AI-enabled video surveillance requirements. Based on the requirements, this study proposes a CFL framework to gradually adapt AI models’ knowledge while reducing personal data transmission and retention. The framework uses three different federated learning strategies to rapidly learn from different new data sources while minimizing personal data transmission and retention to a central machine.

Findings

The findings confirm that the proposed CFL framework can help minimize the use of personal data without compromising the AI model's performance. The gradual learning strategies help develop AI-enabled video surveillance that continuously adapts for long-term deployment in public spaces.

Originality/value

This study makes two specific contributions to advance the development of AI-enabled video surveillance in public spaces. First, it examines specific challenges for long-term people monitoring in public spaces and defines AI-enabled video surveillance requirements. Second, it proposes a CFL framework to minimize data transmission and retention for AI-enabled video surveillance. The study provides comprehensive experimental results to evaluate the effectiveness of the proposed framework in the context of facial expression recognition (FER) which involves large-scale datasets.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 15 February 2024

Xuanyan Zhong and Zehui Zhan

The purpose of this study is to develop an intelligent tutoring system (ITS) for programming learning based on information tutoring feedback (ITF) to provide real-time guidance…

100

Abstract

Purpose

The purpose of this study is to develop an intelligent tutoring system (ITS) for programming learning based on information tutoring feedback (ITF) to provide real-time guidance and feedback to self-directed learners during programming problem-solving and to improve learners’ computational thinking.

Design/methodology/approach

By analyzing the mechanism of action of ITF on the development of computational thinking, an ITF strategy and corresponding ITS acting on the whole process of programming problem-solving were developed to realize the evaluation of programming problem-solving ideas based on program logic. On the one hand, a lexical and syntactic analysis of the programming problem solutions input by the learners is performed and presented with a tree-like structure. On the other hand, by comparing multiple algorithms, it is implemented to compare the programming problem solutions entered by the learners with the answers and analyze the gaps to give them back to the learners to promote the improvement of their computational thinking.

Findings

This study clarifies the mechanism of the role of ITF-based ITS in the computational thinking development process. Results indicated that the ITS designed in this study is effective in promoting students’ computational thinking, especially for low-level learners. It also helped to improve students’ learning motivation, and reducing cognitive load, while there’s no significant difference among learners of different levels.

Originality/value

This study developed an ITS based on ITF to address the problem of learners’ difficulty in obtaining real-time guidance in the current programming problem-solving-based computational thinking development, providing a good aid for college students’ independent programming learning.

Details

Interactive Technology and Smart Education, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-5659

Keywords

Article
Publication date: 26 April 2024

Bo Zhang, Yuqian Zheng, Zhiyuan Cui, Dongdong Song, Faqian Liu and Weihua Li

The impact of rolling on the performance of micro arc oxidation (MAO) coatings on ZM5 alloy has been underreported. The purpose of this study is to explore the correlation between…

Abstract

Purpose

The impact of rolling on the performance of micro arc oxidation (MAO) coatings on ZM5 alloy has been underreported. The purpose of this study is to explore the correlation between rolling and the failure mechanism of MAO coatings in greater depth.

Design/methodology/approach

The influence of rolling on the corrosion and wear properties of MAO coating was investigated by phase structure, bond strength test (initial bond strength and wet adhesion), electrochemical impedance spectroscopy and wear test. The change of the surface electrochemical properties was studied by first principles analysis.

Findings

The results showed that the MAO coating on rolled alloy had better corrosion and wear resistance compared to cast alloy, although the structure and component content of two kinds of MAO coating are nearly identical. The difference in interface bonding between MAO coating and Mg substrate is the primary factor contributing to the disparity in performance between the two types of samples. Finally, the impact of the rolling process on MAO coating properties is explained through first-principle calculation.

Originality/value

A comprehensive explanation of the impact of the rolling process on MAO coating properties will provide substantial support for enhancing the application of Mg alloy anticorrosion.

Graphical abstract

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 10 January 2024

Ibrahim Elassal, Esraa Elmallwany and Ahmed Hammad

The alternative medical practices of both Ottoman and Andalusian heritages could be shown through bloodletting and cupping therapies that have been utilized in various ancient…

Abstract

Purpose

The alternative medical practices of both Ottoman and Andalusian heritages could be shown through bloodletting and cupping therapies that have been utilized in various ancient civilizations. The current study endeavors to explore the historical implementation of bloodletting as a sustainable medical heritage by Muslim physicians in the Andalusian and Ottoman empires as a part of their surgical heritage that is documented in their manuscripts and miniatures.

Design/methodology/approach

The primary research materials utilized in this case study are the copy of the manuscript Al-Tasrif li-man ‘Ajiza ‘an al-Taʾlif in Berlin library and the copy of the manuscript Cerrahiye-I Ilhaniye of the National Library in Paris. The study applies an analytical comparative approach to examine the practice of bloodletting by two Muslim physicians as a part of reviving heritage usage.

Findings

The present study investigates the heritage in both periods throughout implementation of cupping therapy by Al-Zahrawi and Sabuncuoglu, while also examining the resemblances and divergences in the techniques of bloodletting as a heritage medical treatment employed by these Muslim physicians and still used in Muslim culture and could be used in medical tourism purposes.

Originality/value

The current study aims to investigate the understanding and implementation of heritage bloodletting and cupping therapy as a sustainable tool in surgical purposes, through an exploration of treatment methods detailed in both manuscripts. Additionally, it examines the contributions made by the two surgeons toward the development of new cups and the refinement of processes involved in bloodletting and cupping therapy. Furthermore, the study highlights the locations where cupping can be performed and differentiates between dry and wet cupping techniques, as depicted in the painted instruments documented in both manuscripts.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Access

Year

Last 6 months (107)

Content type

Earlycite article (107)
1 – 10 of 107