Search results

1 – 3 of 3
Article
Publication date: 9 August 2013

M.A. Maleque and S. Sugrib

The aim of this paper is to study the tribological behaviour of Fe‐C‐Al cast iron at different temperatures using universal pin‐on‐disk machine.

Abstract

Purpose

The aim of this paper is to study the tribological behaviour of Fe‐C‐Al cast iron at different temperatures using universal pin‐on‐disk machine.

Design/methodology/approach

The cold set resin bonded sand mould casting process was employed to develop Fe‐C‐Al cast iron and Fe‐C‐Si cast iron. The microstructures of materials were studied using field emission scanning electron microscope. The wear and friction tests were conducted using universal pin‐on‐disk machine at 25°C, 100°C, 200°C and 300°C temperature. The worn surface was characterized using scanning electron microscopy.

Findings

The lower wear rate was found for Fe‐C‐Al cast iron compared to Fe‐C‐Si cast iron and delamination type wear morphology was observed in both types of cast iron materials. The results also showed that the friction coefficient value of Fe‐C‐Al cast iron was lower than that of Fe‐C‐Si cast iron at different temperatures. It can be concluded that the overall tribological behaviour of Fe‐C‐Al cast iron at higher temperatures was better than conventional Fe‐C‐Si cast iron.

Originality/value

The information on the development and tribological properties of the Fe‐C‐Al cast iron at different temperatures is scarce in the literature. The special type of cold set resin bonded sand mould was used for casting this Fe‐C‐Al cast iron material. Therefore, the current study is quite new and it is hoped that it will provide a high value to the automotive and other engineering researchers for the application of this material.

Details

Industrial Lubrication and Tribology, vol. 65 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 March 2017

Hongbin Xuan and Gongjun Cui

To improve the wear resistance of the sliding boot, the wear-resistant Fe-21 Wt.% Cr-5 Wt.% B alloy is prepared, and the wear mechanism is studied under dry sliding condition.

Abstract

Purpose

To improve the wear resistance of the sliding boot, the wear-resistant Fe-21 Wt.% Cr-5 Wt.% B alloy is prepared, and the wear mechanism is studied under dry sliding condition.

Design/methodology/approach

The anti-wear Fe-21 Wt.% Cr-5 Wt.% B alloy is prepared by powder metallurgy technique. The tribological behavior of Fe-Cr-B alloy sliding against ASTM 1045 steel pin is studied at 30-60 N and 0.03-0.12 m/s using a reciprocating pin-on-disk tribometer under dry sliding condition. Meanwhile, the ASTM 5140 and 3316 steel are studied as compared samples.

Findings

The friction coefficients of tested specimens increase with the increasing normal load. However, this effect is the opposite in case of different sliding speeds. The specific wear rates increase as the sliding speed and normal load increase. The Fe-Cr-B alloy shows the best tribological properties under the dry sliding condition and the wear mechanism is mainly ploughing.

Originality/value

This wear-resistant Fe-21 Wt.% Cr-5 Wt.% B alloy can replace the traditional materials to process the sliding shoes and improve the service life of coal mining machine.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 June 2015

Gongjun Cui, Jin Wei and Gongxiong Wu

The purpose of this study is to prepare new Fe-Cr-B alloys which have better wear resistance and investigate the wear mechanisms of these alloys tribotesting against SiC ceramic…

Abstract

Purpose

The purpose of this study is to prepare new Fe-Cr-B alloys which have better wear resistance and investigate the wear mechanisms of these alloys tribotesting against SiC ceramic balls under dry sliding process.

Design/methodology/approach

Fe-Cr matrix alloys were fabricated using powder metallurgy route. The tribological behaviors of Fe-Cr alloys tribotesting against SiC ceramic balls using a ball-on-disc tribotester were studied at different testing conditions. Meanwhile, microstructure, phases and morphology of worn surfaces were investigated.

Findings

The element boron improved mechanical properties and tribological behavior of alloys. The friction coefficients of Fe-Cr matrix alloys did not show obvious difference. The specific wear rates of alloys decreased and then increased because of the brittleness of alloys with the increase of boron content. Fe-21 weight per cent Cr-7 weight per cent B alloy showed the best tribological properties in dry sliding. The wear mechanism of Fe-Cr alloy was plastic deformation and abrasive wear. However, the Fe-Cr-B alloys showed fatigue spalling characteristics.

Originality/value

This paper reported a new, cheap and wear-resistant Fe matrix material to prepare mechanical parts in food and mining industrial fields.

Details

Industrial Lubrication and Tribology, vol. 67 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 3 of 3