Search results

1 – 10 of 11
Article
Publication date: 8 May 2018

Pierre Lavoie, Dorian Pena, Yannick Hoarau and Eric Laurendeau

This paper aims to assess the strengths and weaknesses of four thermodynamic models used in aircraft icing simulations to orient the development or the choice of an improved…

Abstract

Purpose

This paper aims to assess the strengths and weaknesses of four thermodynamic models used in aircraft icing simulations to orient the development or the choice of an improved thermodynamic model.

Design/methodology/approach

Four models are compared to assess their capabilities: Messinger, iterative Messinger, extended Messinger and shallow water icing models. They have been implemented in the aero-icing framework, NSCODE-ICE, under development at Polytechnique Montreal since 2012. Comparison is performed over typical rime and glaze ice cases. Furthermore, a manufactured geometry with multiple recirculation zones is proposed as a benchmark test to assess the efficiency in runback water modeling and geometry evolution.

Findings

The comparison shows that one of the main differences is the runback water modeling. Runback modeling based on the location of the stagnation point fails to capture the water film behavior in the presence of recirculation zones on airfoils. However, runback modeling based on air shear stress is more suitable in this situation and can also handle water accumulation while the other models cannot. Also, accounting for the conduction through the ice layer is found to have a great impact on the final ice shape as it increases the overall freezing fraction.

Originality/value

This paper helps visualize the effect of different thermodynamic models implemented in the same aero-icing framework. Also, the use of a complex manufactured geometry highlights weaknesses not normally noticeable with classic ice accretion simulations. To help with the visualization, the ice shape is presented with the water layer, which is not shown on typical icing results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 April 2022

Antonio Carozza, Francesco Petrosino and Giuseppe Mingione

This study aims to couple two codes, one able to perform icing simulations and another one capable to simulate the performance of an electrothermal anti-icing system in an…

Abstract

Purpose

This study aims to couple two codes, one able to perform icing simulations and another one capable to simulate the performance of an electrothermal anti-icing system in an integrated fashion.

Design/methodology/approach

The classical tool chain of icing simulation (aerodynamics, water catch and impact, mass and energy surface balance) is coupled to the thermal analysis through the surface substrate and the ice thickness. In the present approach, the ice protection simulation is not decoupled from the ice accretion simulation, but a single computational workflow is considered.

Findings

A fast approach to simulate advanced anti-icing systems is found in this study.

Originality/value

This study shows the validation of present procedure against literature data, both experimental and numerical.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 June 1992

KAMEL M. AL‐KHALIL, THEO G. JR. KEITH and KENNETH J. DE WITT

A numerical solution for ‘running wet’ aircraft anti‐icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into…

Abstract

A numerical solution for ‘running wet’ aircraft anti‐icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into individual rivulets. The wetness factor distribution resulting from the film breakup and rivulet configuration on the surface are predicted in the numerical solution procedure. The solid wall is modelled as a multi‐layer structure and the anti‐icing system used is of the thermal type utilizing hot air and/or electrical heating elements embedded within the layers. Details of the calculation procedure and the methods used are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 June 2021

Junjie Niu, Weimin Sang, Feng Zhou and Dong Li

This paper aims to investigate the anti-icing performance of the nanosecond dielectric barrier discharge (NSDBD) plasma actuator.

Abstract

Purpose

This paper aims to investigate the anti-icing performance of the nanosecond dielectric barrier discharge (NSDBD) plasma actuator.

Design/methodology/approach

With the Lagrangian approach and the Messinger model, two different ice shapes known as rime and glaze icing are predicted. The air heating in the boundary layer over a flat plate has been simulated using a phenomenological model of the NSDBD plasma. The NSDBD plasma actuators are planted in the leading edge anti-icing area of NACA0012 airfoil. Combining the unsteady Reynolds-averaged Navier–Stokes equations and the phenomenological model, the flow field around the airfoil is simulated and the effects of the peak voltage, the pulse repetition frequency and the direction arrangement of the NSDBD on anti-icing performance are numerically investigated, respectively.

Findings

The agreement between the numerical results and the experimental data indicates that the present method is accurate. The results show that there is hot air covering the anti-icing area. The increase of the peak voltage and pulse frequency improves the anti-icing performance, and the direction arrangement of NSDBD also influences the anti-icing performance.

Originality/value

A numerical strategy is developed combining the icing algorithm with the phenomenological model. The effects of three parameters of NSDBD on anti-icing performance are discussed. The predicted results show that the anti-icing method is effective and may be helpful for the design of the anti-icing system of the unmanned aerial vehicle.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 January 2022

Adam Targui and Wagdi George Habashi

Responsible for lift generation, the helicopter rotor is an essential component to protect against ice accretion. As rotorcraft present a smaller wing cross-section and a lower…

Abstract

Purpose

Responsible for lift generation, the helicopter rotor is an essential component to protect against ice accretion. As rotorcraft present a smaller wing cross-section and a lower available onboard power compared to aircraft, electro-thermal heating pads are favored as they conform to the blades’ slender profile and limited volume. Their optimization is carried out here taking into account, for the first time, the highly three-dimensional (3D) nature of the flow and ice accretion, in contrast to the current state-of-the-art that is limited to two-dimensional (2D) airfoils.

Design/methodology/approach

Conjugate heat transfer simulation results are provided by the truly 3D finite element Navier–Stokes analysis package-ICE code, embedded in a proprietary rotorcraft simulation toolkit, with reduced-order modeling providing a time-efficient evaluation of the objective and constraint functions at every iteration. The proposed methodology optimizes heating pads extent and power usage and is versatile enough to address in a computationally efficient manner a wide variety of optimization formulations.

Findings

Low-error reduced-order modeling strategies are introduced to make the tackling of complex 3D geometries feasible in todays’ computers, with the developed framework applied to four problem formulations, demonstrating marked reductions to power consumption along with improved aerodynamics.

Originality/value

The present paper proposes a 3D framework for the optimization of electro-thermal rotorcraft ice protection systems, in hover and forward flight. The current state-of-the-art is limited to 2D airfoils.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2021

Richard Hann and Tor Arne Johansen

The main purpose of this paper is to investigate the effects of icing on unmanned aerial vehicles (UAVs) at low Reynolds numbers and to highlight the differences to icing on…

Abstract

Purpose

The main purpose of this paper is to investigate the effects of icing on unmanned aerial vehicles (UAVs) at low Reynolds numbers and to highlight the differences to icing on manned aircraft at high Reynolds numbers. This paper follows existing research on low Reynolds number effects on ice accretion. This study extends the focus to how variations of airspeed and chord length affect the ice accretions, and aerodynamic performance degradation is investigated.

Design/methodology/approach

A parametric study with independent variations of airspeed and chord lengths was conducted on a typical UAV airfoil (RG-15) using icing computational fluid dynamic methods. FENSAP-ICE was used to simulate ice shapes and aerodynamic performance penalties. Validation was performed with two experimental ice shapes obtained from a low-speed icing wind tunnel. Three meteorological conditions were chosen to represent the icing typologies of rime, glaze and mixed ice. A parameter study with different chord lengths and airspeeds was then conducted for rime, glaze and mixed icing conditions.

Findings

The simulation results showed that the effect of airspeed variation depended on the ice accretion regime. For rime, it led to a minor increase in ice accretion. For mixed and glaze, the impact on ice geometry and penalties was substantially larger. The variation of chord length had a substantial impact on relative ice thicknesses, ice area, ice limits and performance degradation, independent from the icing regime.

Research limitations/implications

The implications of this manuscript are relevant for highlighting the differences between icing on manned and unmanned aircraft. Unmanned aircraft are typically smaller and fly slower than manned aircraft. Although previous research has documented the influence of this on the ice accretions, this paper investigates the effect on aerodynamic performance degradation. The findings in this work show that UAVs are more sensitive to icing conditions compared to larger and faster manned aircraft. By consequence, icing conditions are more severe for UAVs.

Practical implications

Atmospheric in-flight icing is a severe risk for fixed-wing UAVs and significantly limits their operational envelope. As UAVs are typically smaller and operate at lower airspeeds compared to manned aircraft, it is important to understand how the differences in airspeed and size affect ice accretion and aerodynamic performance penalties.

Originality/value

Earlier work has described the effect of Reynolds number variations on the ice accretion characteristics for UAVs. This work is expanding on those findings by investigating the effect of airspeed and chord length on ice accretion shapes separately. In addition, this study also investigates how these parameters affect aerodynamic performance penalties (lift, drag and stall).

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 October 2021

Jincheng Tang, Yongqi Xie, Jianqin Zhu, Xianwei Wang, Siyuan Liu, JianZu Yu and Hongwei Wu

The purpose of this paper is to numerically and experimentally evaluate the effect of the protection net icing on the inlet performance of helicopter engines.

Abstract

Purpose

The purpose of this paper is to numerically and experimentally evaluate the effect of the protection net icing on the inlet performance of helicopter engines.

Design/methodology/approach

The ice shapes of the protection net at different times are first simulated by a two-dimensional (2D) icing calculation, then the porous media parameters are calculated based on the 2D ice shapes. Afterward, three-dimensional flow fields of the engine inlet with the iced net are simulated using the porous media model instead of the real protection net. The transient pressure losses of the iced protection net are calculated and tested through an icing wind tunnel test rig under different icing conditions.

Findings

Overall, the numerical results and experimental data show a good agreement. The effects of several control parameters, such as liquid water contents (LWC), water droplet diameters and airflow velocities on the pressure loss of the protection net during the icing process are analyzed in a systematic manner. The results indicate that the pressure loss increases with the increase of the LWC at the same icing time. The same trend occurs when the water droplet diameter and the airflow velocity increase.

Originality/value

A new method to predict the pressure loss of the iced protection net is proposed. A series of tests in an icing wind tunnel are performed to obtain the ice shapes and pressure loss of protection net during the icing process.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 April 2020

Prasad G. and Bruce Ralphin Rose J.

The purpose of this paper is to analyse an actual representation of ice accretions, which are important during the certification process.

Abstract

Purpose

The purpose of this paper is to analyse an actual representation of ice accretions, which are important during the certification process.

Design/methodology/approach

Ice accretion experiments are conducted in a low-speed subsonic wind tunnel testing facility to evaluate the influence of various ice shapes around the airfoil sections. Ice accumulation changes the shapes of local airfoil sections and thereby affects the aerodynamic performance characteristics of the considered NACA 23012 profile. The ice profiles are impregnated using balsa wood with glace, horn and mixed ice accretion cases for the detailed experimental investigation.

Findings

Computational fluid dynamics analysis is done to compute the influence of different ice shapes on the aerodynamic coefficients (Cl and Cd) while ice accretion occurs at the leading edge of the airfoil sections. It is observed that the Cl and Cd modified immediately more than 40% as compared to the clean wing configuration. In the same fashion, the skin friction coefficient also abruptly changes for different ice shapes that have the potential to induce flutter at the critical speed of the airplane. The computational solutions are further validated through wind tunnel experiments and recent literature concerning certification for flight in icing conditions.

Social implications

The ice accretion study on the aerodynamic surfaces can also be extended for wind turbine blades installed at different cold regions around the globe. Further, the propeller icing influences the entire rotorcraft aerodynamics at low temperature conditions and the findings of this study are strongly connected with such problems.

Originality/value

The aerodynamic characteristics of the baseline airfoil are greatly affected by the ice accretion problem. Although flight through icing condition endures for a short duration, the takeoff path and decision speed are determined based on airplane drag as per federal aviation regulations. Hence, the proposed study is focussed on a cost-effective approach to predict the effect of ice accretion to achieve optimum performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 June 1950

J.B. Wassall

BACKGROUND IN the early stages of World War II the U.S. Navy used the Lockheed PV‐1 (Ventura) in considerable quantities as a land‐based patrol plane for anti‐submarine and…

Abstract

BACKGROUND IN the early stages of World War II the U.S. Navy used the Lockheed PV‐1 (Ventura) in considerable quantities as a land‐based patrol plane for anti‐submarine and anti‐surface vessel patrol and attack. Inasmuch as the PV‐1 was the first high speed land based patrol aeroplane used by the U.S. Navy, and realizing that its aero‐dynamic configuration grew out of the commercial Lockheed Lodestar, it can be understood that its tactical utility was a compromise.

Details

Aircraft Engineering and Aerospace Technology, vol. 22 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 November 1959

Describes a technique, currently used at General Motors, which contains some of the elements of operations research and has effected important reductions in costs. The technique…

27

Abstract

Describes a technique, currently used at General Motors, which contains some of the elements of operations research and has effected important reductions in costs. The technique contains seven steps: (i) determine problem or objective, (ii) study conditions existing, (iii) plan possible solutions, (iv) evaluate possible solutions, (v) recommend action, (vi) follow up to assure action, (vii) check results. The procedure followed at each step is outlined. The investigation is carried out by a special Planning Team. This team consults other staff involved as may be necessary. During any investigation of existing plant the aim is that production should continue at a minimum cost.

Details

Aircraft Engineering and Aerospace Technology, vol. 31 no. 11
Type: Research Article
ISSN: 0002-2667

1 – 10 of 11