To read the full version of this content please select one of the options below:

Numerical and experimental investigations into protection net icing at the helicopter engine inlet

Jincheng Tang (School of Aeronautic Science and Engineering, Beihang University , Beijing, China)
Yongqi Xie (School of Aeronautic Science and Engineering, Beihang University , Beijing, China)
Jianqin Zhu (National Key Laboratory of Science and Technology on Aero-Engines, School of Energy and Power Engineering, Beihang University , Beijing, China)
Xianwei Wang ( China Helicopter Research and Development Institute , Tianjin, China)
Siyuan Liu (School of Aeronautic Science and Engineering, Beihang University , Beijing, China)
JianZu Yu (School of Aeronautic Science and Engineering, Beihang University , Beijing, China)
Hongwei Wu (School of Physics, Engineering and Computer Science, University of Hertfordshire , Hatfield, UK)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Article publication date: 29 October 2021

Issue publication date: 30 November 2021

Downloads
59

Abstract

Purpose

The purpose of this paper is to numerically and experimentally evaluate the effect of the protection net icing on the inlet performance of helicopter engines.

Design/methodology/approach

The ice shapes of the protection net at different times are first simulated by a two-dimensional (2D) icing calculation, then the porous media parameters are calculated based on the 2D ice shapes. Afterward, three-dimensional flow fields of the engine inlet with the iced net are simulated using the porous media model instead of the real protection net. The transient pressure losses of the iced protection net are calculated and tested through an icing wind tunnel test rig under different icing conditions.

Findings

Overall, the numerical results and experimental data show a good agreement. The effects of several control parameters, such as liquid water contents (LWC), water droplet diameters and airflow velocities on the pressure loss of the protection net during the icing process are analyzed in a systematic manner. The results indicate that the pressure loss increases with the increase of the LWC at the same icing time. The same trend occurs when the water droplet diameter and the airflow velocity increase.

Originality/value

A new method to predict the pressure loss of the iced protection net is proposed. A series of tests in an icing wind tunnel are performed to obtain the ice shapes and pressure loss of protection net during the icing process.

Keywords

Acknowledgements

The authors would like to thank China Aerodynamics Research and Development Center for the help of icing wind tunnel experiments to this work. This research is supported by Ministry of Industry and Information Technology of the People’s Republic of China (No. MJ-2015-F-050).

Citation

Tang, J., Xie, Y., Zhu, J., Wang, X., Liu, S., Yu, J. and Wu, H. (2021), "Numerical and experimental investigations into protection net icing at the helicopter engine inlet", Aircraft Engineering and Aerospace Technology, Vol. 93 No. 10, pp. 1513-1525. https://doi.org/10.1108/AEAT-09-2019-0190

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited