Search results

1 – 10 of 183
Article
Publication date: 1 January 1991

P.A.J. VAN DEN BOGERT, R. DE BORST, G.T. LUITEN and J. ZEILMAKER

A marked characteristic of rubber‐like materials is the nearly incompressible behaviour. This type of behaviour is best modelled by mixed finite elements with separate…

Abstract

A marked characteristic of rubber‐like materials is the nearly incompressible behaviour. This type of behaviour is best modelled by mixed finite elements with separate interpolation functions for the displacements and the pressure. In this contribution the performance of three‐dimensional elements is investigated using a two‐tiered strategy. First, the ability of some linear and quadratic three‐dimensional elements to deform correctly under nearly isochoric conditions is estimated using the well‐known constraint‐counting method, in which the ratio of the number of degrees‐of‐freedom over the number of kinematic constraints present in the finite element mesh is determined. Next, the performance of the elements is assessed by numerical simulations for three cuboidal rubber blocks with different shape factors. The results turn out to be quite sensitive with respect to the ratio of the number of degrees‐of‐freedom over the number of kinematic constraints, since too many pressure degrees‐of‐freedom make the element overstiff, while too few pressure degrees‐of‐freedom may cause the occurrence of spurious kinematic modes. This observation appears to be not only valid for the global structural behaviour, but also with respect to the specific parts in the structure, where the above‐mentioned ratio is different from the global number, e.g., in corners of the structure.

Details

Engineering Computations, vol. 8 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 August 2022

Dorcas Kaweesa, Lourdes Bobbio, Allison M. Beese and Nicholas Alexander Meisel

This study aims to investigate the tensile strength and elastic modulus of custom-designed polymer composites developed using voxel-based design. This study also evaluates…

Abstract

Purpose

This study aims to investigate the tensile strength and elastic modulus of custom-designed polymer composites developed using voxel-based design. This study also evaluates theoretical models, such as the rule of mixtures, Halpin–Tsai model, Cox–Krenchel model and the Young–Beaumont model and the ability to predict the mechanical properties of particle-reinforced composites based on changes in the design of rigid particles at the microscale within a flexible polymer matrix.

Design/methodology/approach

This study leverages the PolyJet process for voxel-printing capabilities and a design of experiments approach to define the microstructural design elements (i.e. aspect ratio, orientation, size and volume fraction) used to create custom-designed composites.

Findings

The comparison between the predictions and experimental results helps identify appropriate methods for determining the mechanical properties of custom-designed composites ensuring informed design decisions for improved mechanical properties.

Originality/value

This work centers on multimaterial additive manufacturing leveraging design freedom and material complexity to create a wide range of composite materials. This study highlights the importance of identifying the process, structure and property relationships in material design.

Article
Publication date: 1 November 2000

Stefan Doll, Karl Schweizerhof, Ralf Hauptmann and Christof Freischläger

As known from nearly incompressible elasticity, selective reduced integration (SRI) is a simple and effective method of overcoming the volumetric locking problem in 2D and 3D…

Abstract

As known from nearly incompressible elasticity, selective reduced integration (SRI) is a simple and effective method of overcoming the volumetric locking problem in 2D and 3D solid elements. This method of finite elastoviscoplasticity is discussed as are its well‐known limitations. In this context, an isochoric‐volumetric decoupled material behavior is assumed and thus the additive deviatoric‐volumetric decoupling of the consistent algorithmic moduli tensor is essential. By means of several numerical examples, the performance of elements using selective reduced integration is demonstrated and compared to the performance of other elements such as the enhanced assumed strain elements. It is shown that a minor modification, with little numerical effort, leads to rather robust element behaviour. The application of this process to so‐called solid‐shell elements for thin‐walled structures is also discussed.

Details

Engineering Computations, vol. 17 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 2004

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element modelling and simulation of indentation testing from the theoretical as well as practical points of view. The…

2056

Abstract

This paper gives a bibliographical review of the finite element modelling and simulation of indentation testing from the theoretical as well as practical points of view. The bibliography lists references to papers, conference proceedings and theses/dissertations that were published between 1990 and 2002. At the end of this paper, 509 references are listed dealing with subjects such as, fundamental relations and modelling in indentation testing, identification of mechanical properties for specific materials, fracture mechanics problems in indentation, scaling relationship for indentation, indenter geometry and indentation testing.

Details

Engineering Computations, vol. 21 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1994

C.H. Liu, G. Hofstetter and H.A. Mang

The paper starts with a review of constitutive equations forrubber‐like materials, formulated in the invariants of the rightCauchy—Green deformation tensor. A general framework…

Abstract

The paper starts with a review of constitutive equations for rubber‐like materials, formulated in the invariants of the right Cauchy—Green deformation tensor. A general framework for the derivation of the stress tensor and the tangent moduli for invariant‐based models, for both the reference and the current configuration, is presented. The free energy of incompressible rubber‐like materials is extended to a compressible formulation by adding the volumetric part of the free energy. In order to overcome numerical problems encountered with displacement‐based finite element formulations for nearly incompressible materials, three‐dimensional finite elements, based on a penalty‐type formulation, are proposed. They are characterized by applying reduced integration to the volumetric parts of the tangent stiffness matrix and the pressure‐related parts of the internal force vector only. Moreover, hybrid finite elements are proposed. They are based on a three‐field variational principle, characterized by treating the displacements, the dilatation and the hydrostatic pressure as independent variables. Subsequently, this formulation is reduced to a generalized displacement formulation. In the numerical study these formulations are evaluated. The results obtained are compared with numerical results available in the literature. In addition, the proposed formulations are applied to 3D finite element analysis of an automobile tyre. The computed results are compared with experimental data.

Details

Engineering Computations, vol. 11 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1997

M. Kaliske and H. Rothert

Derives a formulation for spatial stress tensors and spatial material tensors of hyperelastic material. Looks at a class of materials with the strain energy function decomposed…

2265

Abstract

Derives a formulation for spatial stress tensors and spatial material tensors of hyperelastic material. Looks at a class of materials with the strain energy function decomposed into a volumetric and a deviatoric part. Separate terms formulate the strain energy with respect to the invariants of the left Cauchy‐Green tensor. Stress and material tensors, which play a crucial role in the solution process of the finite element formulation, are derived solely in the current configuration. Applies the described framework to several different constitutive models based on phenomenologically and physically motivated material descriptions. Proposes a formulation for the finite element implementation of van der Waals material. Compares numerical results with experimental investigations given in the literature. For three‐dimensional finite element computations standard elements and mixed elements, based on a three‐field variational principle where displacements, the hydrostatic pressure and the dilatations are independent variables, are used.

Details

Engineering Computations, vol. 14 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1937

T.L. Garner

UNTIL the introduction of the synthetic rubber‐like materials of various chemical constitutions, the development of qualities to resist oil has been a problem of compounding…

Abstract

UNTIL the introduction of the synthetic rubber‐like materials of various chemical constitutions, the development of qualities to resist oil has been a problem of compounding ordinary rubber with suitable ingredients to give as low a swelling figure in oil as possible. Generally speaking, the more the rubber content could be reduced the greater the resistance of the compound, and the production of really high rubber content oil resisting rubbers was only possible to a limited extent.

Details

Aircraft Engineering and Aerospace Technology, vol. 9 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 19 October 2015

Jacob P. Moore and Christopher B. Williams

– This paper aims to seek to fill a gap in the literature by characterizing the fatigue life and microstructure of a printed elastomer material, the TangoBlackPlus material.

1856

Abstract

Purpose

This paper aims to seek to fill a gap in the literature by characterizing the fatigue life and microstructure of a printed elastomer material, the TangoBlackPlus material.

Design/methodology/approach

Because the TangoBlackPlus material is marketed as “rubber-like”, the printed elastomer specimens were tested according to the ASTM D4482-11 “Test Method for Rubber Property Extension Cycling Fatigue”. The microstructure of the printed material and multi-material interface was examined by slicing specimens and examining them under an optical microscope.

Findings

Findings are developed to show the relationship between elongation and expected fatigue life. Findings also indicate that the smoother, non-support encased “glossy” surface finish option for PolyJet parts improve the fatigue life of components and that there are a number of microscopic voids in the TangoBlackPlus material that seem to be concentrated at layer and print head boundaries.

Research limitations/implications

This paper provides a glimpse into the fatigue properties and microstructure of printed elastomeric parts, a previously unstudied area. This work is limited in that it only looks at specimens created in a single orientation, on a single machine, with a single material. More work is needed to understand the general fatigue properties of printed elastomers and the factors that influence fatigue life in these materials.

Practical implications

The authors provide several design guidelines based on the findings and previous work that can be used to increase the fatigue life of printed elastomer components.

Originality/value

As additive manufacturing (AM) technology moves from a prototyping tool to a tool used to create end use products, it is important to examine the expected lifespan of AM components. This work adds to the understanding of the expected product lifecycle of printed elastomer components that will likely be expected to withstand large repeated loading conditions.

Details

Rapid Prototyping Journal, vol. 21 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 April 1990

P. Wriggers and R.L. Taylor

An axisymmetrical membrane element for large deformations is developed which is based on Ogden's non‐linear elastic material law. Special attention is given to the linearization…

Abstract

An axisymmetrical membrane element for large deformations is developed which is based on Ogden's non‐linear elastic material law. Special attention is given to the linearization procedure to obtain a quadratically convergence behaviour within Newton's method. Several examples show the applicability and performance of the proposed formulation.

Details

Engineering Computations, vol. 7 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 July 1938

T.L. Garner

SOME time ago a series of tests were described in these columns on synthetic rubber‐like materials in certain oils, including one to DTD.44B specification. Since that time there…

Abstract

SOME time ago a series of tests were described in these columns on synthetic rubber‐like materials in certain oils, including one to DTD.44B specification. Since that time there has been much further development of these new materials and, in particular, a Buna type of synthetic rubber has become available in this country. These German products were not available for export until the latter part of 1937, and, in fact, prior to that time severe penalties were imposed to prevent even samples being surreptitiously taken out of the country. Only one type is available up to the present, a modified Buna N, called in this country Perbunan, but this is the type most suitable for use in oil and solvent resisting rubbers.

Details

Aircraft Engineering and Aerospace Technology, vol. 10 no. 7
Type: Research Article
ISSN: 0002-2667

1 – 10 of 183