Search results

1 – 10 of 29
Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 30 April 2024

Yong Wang, Yuting Liu and Fan Xu

Soft robots are known for their excellent safe interaction ability and promising in surgical applications for their lower risks of damaging the surrounding organs when operating…

Abstract

Purpose

Soft robots are known for their excellent safe interaction ability and promising in surgical applications for their lower risks of damaging the surrounding organs when operating than their rigid counterparts. To explore the potential of soft robots in cardiac surgery, this paper aims to propose an adaptive iterative learning controller for tracking the irregular motion of the beating heart.

Design/methodology/approach

In continuous beating heart surgery, providing a relatively stable operating environment for the operator is crucial. It is highly necessary to use position-tracking technology to keep the target and the surgical manipulator as static as possible. To address the position tracking and control challenges associated with dynamic targets, with a focus on tracking the motion of the heart, control design work has been carried out. Considering the lag error introduced by the material properties of the soft surgical robotic arm and system delays, a controller design incorporating iterative learning control with parameter estimation was used for position control. The stability of the controller was analyzed and proven through the construction of a Lyapunov function, taking into account the unique characteristics of the soft robotic system.

Findings

The tracking performance of both the proportional-derivative (PD) position controller and the adaptive iterative learning controller are conducted on the simulated heart platform. The results of these two methods are compared and analyzed. The designed adaptive iterative learning control algorithm for position control at the end effector of the soft robotic system has demonstrated improved control precision and stability compared with traditional PD controllers. It exhibits effective compensation for periodic lag caused by system delays and material characteristics.

Originality/value

Tracking the beating heart, which undergoes quasi-periodic and complex motion with varying accelerations, poses a significant challenge even for rigid mechanical arms that can be precisely controlled and makes tracking targets located at the surface of the heart with the soft robot fraught with considerable difficulties. This paper originally proposes an adaptive interactive learning control algorithm to cope with the dynamic object tracking problem. The algorithm has theoretically proved its convergence and experimentally validated its performance at the cable-driven soft robot test bed.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 4 April 2024

Bassem T. ElHassan and Alya A. Arabi

The purpose of this paper is to illuminate the ethical concerns associated with the use of artificial intelligence (AI) in the medical sector and to provide solutions that allow…

Abstract

Purpose

The purpose of this paper is to illuminate the ethical concerns associated with the use of artificial intelligence (AI) in the medical sector and to provide solutions that allow deriving maximum benefits from this technology without compromising ethical principles.

Design/methodology/approach

This paper provides a comprehensive overview of AI in medicine, exploring its technical capabilities, practical applications, and ethical implications. Based on our expertise, we offer insights from both technical and practical perspectives.

Findings

The study identifies several advantages of AI in medicine, including its ability to improve diagnostic accuracy, enhance surgical outcomes, and optimize healthcare delivery. However, there are pending ethical issues such as algorithmic bias, lack of transparency, data privacy issues, and the potential for AI to deskill healthcare professionals and erode humanistic values in patient care. Therefore, it is important to address these issues as promptly as possible to make sure that we benefit from the AI’s implementation without causing any serious drawbacks.

Originality/value

This paper gains its value from the combined practical experience of Professor Elhassan gained through his practice at top hospitals worldwide, and the theoretical expertise of Dr. Arabi acquired from international institutes. The shared experiences of the authors provide valuable insights that are beneficial for raising awareness and guiding action in addressing the ethical concerns associated with the integration of artificial intelligence in medicine.

Details

International Journal of Ethics and Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9369

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 5 April 2024

Jawahitha Sarabdeen and Mohamed Mazahir Mohamed Ishak

General Data Protection Regulation (GDPR) of the European Union (EU) was passed to protect data privacy. Though the GDPR intended to address issues related to data privacy in the…

Abstract

Purpose

General Data Protection Regulation (GDPR) of the European Union (EU) was passed to protect data privacy. Though the GDPR intended to address issues related to data privacy in the EU, it created an extra-territorial effect through Articles 3, 45 and 46. Extra-territorial effect refers to the application or the effect of local laws and regulations in another country. Lawmakers around the globe passed or intensified their efforts to pass laws to have personal data privacy covered so that they meet the adequacy requirement under Articles 45–46 of GDPR while providing comprehensive legislation locally. This study aims to analyze the Malaysian and Saudi Arabian legislation on health data privacy and their adequacy in meeting GDPR data privacy protection requirements.

Design/methodology/approach

The research used a systematic literature review, legal content analysis and comparative analysis to critically analyze the health data protection in Malaysia and Saudi Arabia in comparison with GDPR and to see the adequacy of health data protection that could meet the requirement of EU data transfer requirement.

Findings

The finding suggested that the private sector is better regulated in Malaysia than the public sector. Saudi Arabia has some general laws to cover health data privacy in both public and private sector organizations until the newly passed data protection law is implemented in 2024. The finding also suggested that the Personal Data Protection Act 2010 of Malaysia and the Personal Data Protection Law 2022 of Saudi Arabia could be considered “adequate” under GDPR.

Originality/value

The research would be able to identify the key principles that could identify the adequacy of the laws about health data in Malaysia and Saudi Arabia as there is a dearth of literature in this area. This will help to propose suggestions to improve the laws concerning health data protection so that various stakeholders can benefit from it.

Details

International Journal of Law and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-243X

Keywords

Article
Publication date: 2 May 2024

Xi Liang Chen, Zheng Yu Xie, Zhi Qiang Wang and Yi Wen Sun

The six-axis force/torque sensor based on a Y-type structure has the advantages of simple structure, small space volume, low cost and wide application prospects. To meet the…

Abstract

Purpose

The six-axis force/torque sensor based on a Y-type structure has the advantages of simple structure, small space volume, low cost and wide application prospects. To meet the overall structural stiffness requirements and sensor performance requirements in robot engineering applications, this paper aims to propose a Y-type six-axis force/torque sensor.

Design/methodology/approach

The performance indicators such as each component sensitivities and stiffnesses of the sensor were selected as optimization objectives. The multiobjective optimization equations were established. A multiple quadratic response surface in ANSYS Workbench was modeled by using the central composite design experimental method. The optimal manufacturing structural parameters were obtained by using multiobjective genetic algorithm.

Findings

The sensor was optimized and the simulation results show that the overload resistance of the sensor is 200%F.S., and the axial stiffness, radial stiffness, bending stiffness and torsional stiffness are 14.981 kN/mm, 16.855 kN/mm, 2.0939 kN m/rad and 6.4432 kN m/rad, respectively, which meet the design requirements, and the sensitivities of each component of the optimized sensor have been well increased to be 2.969, 2.762, 4.010, 2.762, 2.653 and 2.760 times as those of the sensor with initial structural parameters. The sensor prototype with optimized parameters was produced. According to the calibration experiment of the sensor, the maximum Class I and II errors and measurement uncertainty of each force/torque component of the sensor are 1.835%F.S., 1.018%F.S. and 1.606%F.S., respectively. All of them are below the required 2%F.S.

Originality/value

Hence, the conclusion can be drawn that the sensor has excellent comprehensive performance and meets the expected practical engineering requirements.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 12 March 2024

Adetumilara Iyanuoluwa Adebo, Kehinde Aladelusi and Mustapha Mohammed

This study aims to examine the mediating role of social influence on the relationship between key predictors of E-pharmacy adoption among young consumers based on the unified…

Abstract

Purpose

This study aims to examine the mediating role of social influence on the relationship between key predictors of E-pharmacy adoption among young consumers based on the unified theory of adoption and use of technology (UTAUT).

Design/methodology/approach

This study employs a quantitative correlational research design. Based on cluster sampling, data was collected from 306 university students from three public universities in southwestern Nigeria. Data was analysed using partial least square structural equation modeling.

Findings

The primary determinant driving the adoption of e-pharmacy is performance expectancy. Social influence plays a partial mediating role in linking performance expectancy to e-pharmacy adoption. In contrast, it fully mediates the relationship between effort expectancy, facilitating conditions and the adoption of e-pharmacy services.

Research limitations/implications

This study provides theoretical clarity on recent issues within the UTAUT framework. Findings highlight the complexity of how social factors interact with individual beliefs and external conditions in determining technology acceptance.

Practical implications

Research includes information relevant to access the impact of e-pharmacy services on healthcare accessibility, affordability and quality in developing countries.

Originality/value

The findings extend the adoption of technology literature in healthcare and offer a new understanding of adoption dynamics. The results emphasize the importance of performance expectancy in driving e-pharmacy adoption, providing a clear direction for stakeholders to enhance service quality and user experience of e-pharmacy. Additionally, the mediating effect of social influence highlights the significance of peer recommendations, celebrity endorsements and social media campaigns in shaping consumer adoption of e-pharmacies among young people.

Details

Journal of Humanities and Applied Social Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2632-279X

Keywords

Article
Publication date: 29 February 2024

Ratna Candra Sari, Mahfud Sholihin, Fitra Roman Cahaya, Nurhening Yuniarti, Sariyatul Ilyana and Erna Fitriana

The purpose of this paper is to investigate the process by which the level of immersion in virtual reality-based behavioral simulation (VR-BS) impacts on the non-cognitive and…

Abstract

Purpose

The purpose of this paper is to investigate the process by which the level of immersion in virtual reality-based behavioral simulation (VR-BS) impacts on the non-cognitive and cognitive outcomes. The cognitive outcome is measured using the increase in the level of Sharia financial literacy, while the noncognitive outcome is measured using the behavioral intention to use VR-BS.

Design/methodology/approach

The method consists of two parts: First, the development of VR-BS, in the context of sharia financial literacy, using the waterfall model. Second, testing the effectiveness of VR-BS using the theory of interactive media effects framework. The participants were 142 students from three secondary schools (two Islamic religious schools and one public school) in Yogyakarta and Central Java, Indonesia. Partial least squares structural equation modeling was used for testing the hypotheses.

Findings

VR-BS creates a perceived coolness and vividness, which in turn has an impact on increasing the participants’ engagement. Also, the use of VR has an impact on natural mapping, which increases a user’s engagement through its perceived ease of use. As predicted, the user’s engagement affects VR’s behavior, mediated by the user’s attitude toward VR media. VR’s interactivity, however, does not impact on the cognitive aspect.

Research limitations/implications

The participants were not randomly selected, as the data were collected during the COVID-19 pandemic. As a result, the majority of the participants had never tried VR before this study. The participants, however, were digital natives.

Practical implications

It is implied from the findings that Islamic financial business actors and the relevant government agencies (e.g. the Indonesian Financial Services Authority [OJK], the Ministry of Education, Culture, Research and Technology and the Ministry of Religious Affairs) should collaborate to best prepare the future generation of ummah by using VR-BS in their joint promotion and education programs. The results of the current study reveal that the use of VR-BS may attract people to engage in Islamic financial activities. By engaging in such activities, or at least engaging in real-life simulations/classes/workshops, people may gradually acquire more knowledge about Islamic finance.

Originality/value

As predicted, the user’s engagement has an impact on behavior toward VR-BS, which is mediated by attitude toward VR-BS.

Details

Journal of Islamic Accounting and Business Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1759-0817

Keywords

Article
Publication date: 15 February 2024

Chengguo Liu, Junyang Li, Zeyu Li and Xiutao Chen

The study aims to equip robots with the ability to precisely maintain interaction forces, which is crucial for tasks such as polishing in highly dynamic environments with unknown…

Abstract

Purpose

The study aims to equip robots with the ability to precisely maintain interaction forces, which is crucial for tasks such as polishing in highly dynamic environments with unknown and varying stiffness and geometry, including those found in airplane wings or thin, soft materials. The purpose of this study is to develop a novel adaptive force-tracking admittance control scheme aimed at achieving a faster response rate with higher tracking accuracy for robot force control.

Design/methodology/approach

In the proposed method, the traditional admittance model is improved by introducing a pre-proportional-derivative controller to accelerate parameter convergence. Subsequently, the authors design an adaptive law based on fuzzy logic systems (FLS) to compensate for uncertainties in the unknown environment. Stability conditions are established for the proposed method through Lyapunov analysis, which ensures the force tracking accuracy and the stability of the coupled system consisting of the robot and the interaction environment. Furthermore, the effectiveness and robustness of the proposed control algorithm are demonstrated by simulation and experiment.

Findings

A variety of unstructured simulations and experimental scenarios are designed to validate the effectiveness of the proposed algorithm in force control. The outcomes demonstrate that this control strategy excels in providing fast response, precise tracking accuracy and robust performance.

Practical implications

In real-world applications spanning industrial, service and medical fields where accurate force control by robots is essential, the proposed method stands out as both practical and straightforward, delivering consistently satisfactory performance across various scenarios.

Originality/value

This research introduces a novel adaptive force-tracking admittance controller based on FLS and validated through both simulations and experiments. The proposed controller demonstrates exceptional performance in force control within environments characterized by unknown and varying.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 9 February 2024

Weng Marc Lim, Maria Vincenza Ciasullo, Octavio Escobar and Satish Kumar

The goal of this article is to provide an overview of healthcare entrepreneurship, both in terms of its current trends and future directions.

Abstract

Purpose

The goal of this article is to provide an overview of healthcare entrepreneurship, both in terms of its current trends and future directions.

Design/methodology/approach

The article engages in a systematic review of extant research on healthcare entrepreneurship using the scientific procedures and rationales for systematic literature reviews (SPAR-4-SLR) as the review protocol and bibliometrics or scientometrics analysis as the review method.

Findings

Healthcare entrepreneurship research has fared reasonably well in terms of publication productivity and impact, with diverse contributions coming from authors, institutions and countries, as well as a range of monetary and non-monetary support from funders and journals. The (eight) major themes of healthcare entrepreneurship research revolve around innovation and leadership, disruption and technology, entrepreneurship models, education and empowerment, systems and services, orientations and opportunities, choices and freedom and policy and impact.

Research limitations/implications

The article establishes healthcare entrepreneurship as a promising field of academic research and professional practice that leverages the power of entrepreneurship to advance the state of healthcare.

Originality/value

The article offers a seminal state of the art of healthcare entrepreneurship research.

Details

International Journal of Entrepreneurial Behavior & Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2554

Keywords

Access

Year

Last 6 months (29)

Content type

Earlycite article (29)
1 – 10 of 29