Search results

1 – 10 of 456
Article
Publication date: 12 April 2024

Youwei Li and Jian Qu

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous…

Abstract

Purpose

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous driving, the authors found that the trained neural network model performs poorly in untrained scenarios. Therefore, the authors proposed to improve the transfer efficiency of the model for new scenarios through transfer learning.

Design/methodology/approach

First, the authors achieved multi-task autonomous driving by training a model combining convolutional neural network and different structured long short-term memory (LSTM) layers. Second, the authors achieved fast transfer of neural network models in new scenarios by cross-model transfer learning. Finally, the authors combined data collection and data labeling to improve the efficiency of deep learning. Furthermore, the authors verified that the model has good robustness through light and shadow test.

Findings

This research achieved road tracking, real-time acceleration–deceleration, obstacle avoidance and left/right sign recognition. The model proposed by the authors (UniBiCLSTM) outperforms the existing models tested with model cars in terms of autonomous driving performance. Furthermore, the CMTL-UniBiCL-RL model trained by the authors through cross-model transfer learning improves the efficiency of model adaptation to new scenarios. Meanwhile, this research proposed an automatic data annotation method, which can save 1/4 of the time for deep learning.

Originality/value

This research provided novel solutions in the achievement of multi-task autonomous driving and neural network model scenario for transfer learning. The experiment was achieved on a single camera with an embedded chip and a scale model car, which is expected to simplify the hardware for autonomous driving.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 18 December 2023

Volodymyr Novykov, Christopher Bilson, Adrian Gepp, Geoff Harris and Bruce James Vanstone

Machine learning (ML), and deep learning in particular, is gaining traction across a myriad of real-life applications. Portfolio management is no exception. This paper provides a…

Abstract

Purpose

Machine learning (ML), and deep learning in particular, is gaining traction across a myriad of real-life applications. Portfolio management is no exception. This paper provides a systematic literature review of deep learning applications for portfolio management. The findings are likely to be valuable for industry practitioners and researchers alike, experimenting with novel portfolio management approaches and furthering investment management practice.

Design/methodology/approach

This review follows the guidance and methodology of Linnenluecke et al. (2020), Massaro et al. (2016) and Fisch and Block (2018) to first identify relevant literature based on an appropriately developed search phrase, filter the resultant set of publications and present descriptive and analytical findings of the research itself and its metadata.

Findings

The authors find a strong dominance of reinforcement learning algorithms applied to the field, given their through-time portfolio management capabilities. Other well-known deep learning models, such as convolutional neural network (CNN) and recurrent neural network (RNN) and its derivatives, have shown to be well-suited for time-series forecasting. Most recently, the number of papers published in the field has been increasing, potentially driven by computational advances, hardware accessibility and data availability. The review shows several promising applications and identifies future research opportunities, including better balance on the risk-reward spectrum, novel ways to reduce data dimensionality and pre-process the inputs, stronger focus on direct weights generation, novel deep learning architectures and consistent data choices.

Originality/value

Several systematic reviews have been conducted with a broader focus of ML applications in finance. However, to the best of the authors’ knowledge, this is the first review to focus on deep learning architectures and their applications in the investment portfolio management problem. The review also presents a novel universal taxonomy of models used.

Details

Journal of Accounting Literature, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-4607

Keywords

Open Access
Article
Publication date: 25 January 2024

Atef Gharbi

The purpose of the paper is to propose and demonstrate a novel approach for addressing the challenges of path planning and obstacle avoidance in the context of mobile robots (MR)…

Abstract

Purpose

The purpose of the paper is to propose and demonstrate a novel approach for addressing the challenges of path planning and obstacle avoidance in the context of mobile robots (MR). The specific objectives and purposes outlined in the paper include: introducing a new methodology that combines Q-learning with dynamic reward to improve the efficiency of path planning and obstacle avoidance. Enhancing the navigation of MR through unfamiliar environments by reducing blind exploration and accelerating the convergence to optimal solutions and demonstrating through simulation results that the proposed method, dynamic reward-enhanced Q-learning (DRQL), outperforms existing approaches in terms of achieving convergence to an optimal action strategy more efficiently, requiring less time and improving path exploration with fewer steps and higher average rewards.

Design/methodology/approach

The design adopted in this paper to achieve its purposes involves the following key components: (1) Combination of Q-learning and dynamic reward: the paper’s design integrates Q-learning, a popular reinforcement learning technique, with dynamic reward mechanisms. This combination forms the foundation of the approach. Q-learning is used to learn and update the robot’s action-value function, while dynamic rewards are introduced to guide the robot’s actions effectively. (2) Data accumulation during navigation: when a MR navigates through an unfamiliar environment, it accumulates experience data. This data collection is a crucial part of the design, as it enables the robot to learn from its interactions with the environment. (3) Dynamic reward integration: dynamic reward mechanisms are integrated into the Q-learning process. These mechanisms provide feedback to the robot based on its actions, guiding it to make decisions that lead to better outcomes. Dynamic rewards help reduce blind exploration, which can be time-consuming and inefficient and promote faster convergence to optimal solutions. (4) Simulation-based evaluation: to assess the effectiveness of the proposed approach, the design includes a simulation-based evaluation. This evaluation uses simulated environments and scenarios to test the performance of the DRQL method. (5) Performance metrics: the design incorporates performance metrics to measure the success of the approach. These metrics likely include measures of convergence speed, exploration efficiency, the number of steps taken and the average rewards obtained during the robot’s navigation.

Findings

The findings of the paper can be summarized as follows: (1) Efficient path planning and obstacle avoidance: the paper’s proposed approach, DRQL, leads to more efficient path planning and obstacle avoidance for MR. This is achieved through the combination of Q-learning and dynamic reward mechanisms, which guide the robot’s actions effectively. (2) Faster convergence to optimal solutions: DRQL accelerates the convergence of the MR to optimal action strategies. Dynamic rewards help reduce the need for blind exploration, which typically consumes time and this results in a quicker attainment of optimal solutions. (3) Reduced exploration time: the integration of dynamic reward mechanisms significantly reduces the time required for exploration during navigation. This reduction in exploration time contributes to more efficient and quicker path planning. (4) Improved path exploration: the results from the simulations indicate that the DRQL method leads to improved path exploration in unknown environments. The robot takes fewer steps to reach its destination, which is a crucial indicator of efficiency. (5) Higher average rewards: the paper’s findings reveal that MR using DRQL receive higher average rewards during their navigation. This suggests that the proposed approach results in better decision-making and more successful navigation.

Originality/value

The paper’s originality stems from its unique combination of Q-learning and dynamic rewards, its focus on efficiency and speed in MR navigation and its ability to enhance path exploration and average rewards. These original contributions have the potential to advance the field of mobile robotics by addressing critical challenges in path planning and obstacle avoidance.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 3 January 2024

Miao Ye, Lin Qiang Huang, Xiao Li Wang, Yong Wang, Qiu Xiang Jiang and Hong Bing Qiu

A cross-domain intelligent software-defined network (SDN) routing method based on a proposed multiagent deep reinforcement learning (MDRL) method is developed.

Abstract

Purpose

A cross-domain intelligent software-defined network (SDN) routing method based on a proposed multiagent deep reinforcement learning (MDRL) method is developed.

Design/methodology/approach

First, the network is divided into multiple subdomains managed by multiple local controllers, and the state information of each subdomain is flexibly obtained by the designed SDN multithreaded network measurement mechanism. Then, a cooperative communication module is designed to realize message transmission and message synchronization between the root and local controllers, and socket technology is used to ensure the reliability and stability of message transmission between multiple controllers to acquire global network state information in real time. Finally, after the optimal intradomain and interdomain routing paths are adaptively generated by the agents in the root and local controllers, a network traffic state prediction mechanism is designed to improve awareness of the cross-domain intelligent routing method and enable the generation of the optimal routing paths in the global network in real time.

Findings

Experimental results show that the proposed cross-domain intelligent routing method can significantly improve the network throughput and reduce the network delay and packet loss rate compared to those of the Dijkstra and open shortest path first (OSPF) routing methods.

Originality/value

Message transmission and message synchronization for multicontroller interdomain routing in SDN have long adaptation times and slow convergence speeds, coupled with the shortcomings of traditional interdomain routing methods, such as cumbersome configuration and inflexible acquisition of network state information. These drawbacks make it difficult to obtain global state information about the network, and the optimal routing decision cannot be made in real time, affecting network performance. This paper proposes a cross-domain intelligent SDN routing method based on a proposed MDRL method. First, the network is divided into multiple subdomains managed by multiple local controllers, and the state information of each subdomain is flexibly obtained by the designed SDN multithreaded network measurement mechanism. Then, a cooperative communication module is designed to realize message transmission and message synchronization between root and local controllers, and socket technology is used to ensure the reliability and stability of message transmission between multiple controllers to realize the real-time acquisition of global network state information. Finally, after the optimal intradomain and interdomain routing paths are adaptively generated by the agents in the root and local controllers, a prediction mechanism for the network traffic state is designed to improve awareness of the cross-domain intelligent routing method and enable the generation of the optimal routing paths in the global network in real time. Experimental results show that the proposed cross-domain intelligent routing method can significantly improve the network throughput and reduce the network delay and packet loss rate compared to those of the Dijkstra and OSPF routing methods.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Open Access
Article
Publication date: 7 May 2024

Atef Gharbi

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional…

Abstract

Purpose

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional Adaptive Enhanced A* (BAEA*) algorithm, which uses a new bidirectional search strategy. This approach facilitates simultaneous exploration from both the starting and target nodes and improves the efficiency and effectiveness of the algorithm in navigation environments. By using the heuristic knowledge A*, the algorithm avoids unproductive blind exploration, helps to obtain more efficient data for identifying optimal solutions. The simulation results demonstrate the superior performance of the BAEA* algorithm in achieving rapid convergence towards an optimal action strategy compared to existing methods.

Design/methodology/approach

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bidirectional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Findings

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bi-directional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm.

Research limitations/implications

The rigorous evaluation of our proposed BAEA* algorithm with the BAA* algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Originality/value

The originality of this paper lies in the introduction of the bidirectional adaptive enhancing A* algorithm (BAEA*) as a novel solution for path planning for mobile robots. This algorithm is characterized by its unique characteristics that distinguish it from others in this field. First, BAEA* uses a unique bidirectional search strategy, allowing to explore the same path from both the initial node and the target node. This approach significantly improves efficiency by quickly converging to the best paths and using A* heuristic knowledge. In particular, the algorithm shows remarkable capabilities to quickly recognize shorter and more stable paths while ensuring higher success rates, which is an important feature for time-sensitive applications. In addition, BAEA* shows adaptability and robustness in dynamically changing environments, not only avoiding obstacles but also respecting various constraints, ensuring safe path selection. Its scale further increases its versatility by seamlessly applying it to extensive and complex environments, making it a versatile solution for a wide range of practical applications. The rigorous assessment against established algorithms such as BAA* consistently shows the superior performance of BAEA* in planning shorter paths, achieving higher success rates in different environments and cementing its importance in complex and challenging environments. This originality marks BAEA* as a pioneering contribution, increasing the efficiency, adaptability and applicability of mobile robot path planning methods.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 30 April 2024

Armando Di Meglio, Nicola Massarotti and Perumal Nithiarasu

In this study, the authors propose a novel digital twinning approach specifically designed for controlling transient thermal systems. The purpose of this study is to harness the…

Abstract

Purpose

In this study, the authors propose a novel digital twinning approach specifically designed for controlling transient thermal systems. The purpose of this study is to harness the combined power of deep learning (DL) and physics-based methods (PBM) to create an active virtual replica of the physical system.

Design/methodology/approach

To achieve this goal, we introduce a deep neural network (DNN) as the digital twin and a Finite Element (FE) model as the physical system. This integrated approach is used to address the challenges of controlling an unsteady heat transfer problem with an integrated feedback loop.

Findings

The results of our study demonstrate the effectiveness of the proposed digital twinning approach in regulating the maximum temperature within the system under varying and unsteady heat flux conditions. The DNN, trained on stationary data, plays a crucial role in determining the heat transfer coefficients necessary to maintain temperatures below a defined threshold value, such as the material’s melting point. The system is successfully controlled in 1D, 2D and 3D case studies. However, careful evaluations should be conducted if such a training approach, based on steady-state data, is applied to completely different transient heat transfer problems.

Originality/value

The present work represents one of the first examples of a comprehensive digital twinning approach to transient thermal systems, driven by data. One of the noteworthy features of this approach is its robustness. Adopting a training based on dimensionless data, the approach can seamlessly accommodate changes in thermal capacity and thermal conductivity without the need for retraining.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 October 2023

Mohd Afjal

The aim of the study is to understand the transformative impact of ChatGPT on artificial intelligence (AI) research, its applications, implications, challenges and potential to…

Abstract

Purpose

The aim of the study is to understand the transformative impact of ChatGPT on artificial intelligence (AI) research, its applications, implications, challenges and potential to shape future AI trends. The study also seeks to assess the relevance and quality of research output through citation and bibliographic coupling analysis.

Design/methodology/approach

This study employed a comprehensive bibliometric analysis using Biblioshiny and VOSviewer to investigate the research trends, influential entities and leading contributors in the domain of AI, focusing on the ChatGPT model.

Findings

The analysis revealed a high prevalence of AI-related terms, indicating a significant interest in and engagement with ChatGPT in AI studies and applications. “Nature” and “Thorp H.H.” emerged as the most cited source and author, respectively, while the USA surfaced as the leading contributor in the field.

Research limitations/implications

While the findings provide a comprehensive overview of the ChatGPT research landscape, it is important to note that the conclusions drawn are only as current as the data used.

Practical implications

The study highlights potential collaboration opportunities and signals areas of research that might benefit from increased focus or diversification. It serves as a valuable resource for researchers, practitioners and policymakers for strategic planning and decision-making in AI research, specifically in relation to ChatGPT.

Originality/value

This study is one of the first to provide a comprehensive bibliometric analysis of the ChatGPT research domain, its multidimensional impact and potential. It offers valuable insights for a range of stakeholders in understanding the current landscape and future directions of ChatGPT in AI.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Open Access
Article
Publication date: 19 December 2023

Sand Mohammad Salhout

This study specifically seeks to investigate the strategic implementation of machine learning (ML) algorithms and techniques in healthcare institutions to enhance innovation…

Abstract

Purpose

This study specifically seeks to investigate the strategic implementation of machine learning (ML) algorithms and techniques in healthcare institutions to enhance innovation management in healthcare settings.

Design/methodology/approach

The papers from 2011 to 2021 were considered following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. First, relevant keywords were identified, and screening was performed. Bibliometric analysis was performed. One hundred twenty-three relevant documents that passed the eligibility criteria were finalized.

Findings

Overall, the annual scientific production section results reveal that ML in the healthcare sector is growing significantly. Performing bibliometric analysis has helped find unexplored areas; understand the trend of scientific publication; and categorize topics based on emerging, trending and essential. The paper discovers the influential authors, sources, countries and ML and healthcare management keywords.

Research limitations/implications

The study helps understand various applications of ML in healthcare institutions, such as the use of Internet of Things in healthcare, the prediction of disease, finding the seriousness of a case, natural language processing, speech and language-based classification, etc. This analysis would help future researchers and developers target the healthcare sector areas that are likely to grow in the coming future.

Practical implications

The study highlights the potential for ML to enhance medical support within healthcare institutions. It suggests that regression algorithms are particularly promising for this purpose. Hospital management can leverage time series ML algorithms to estimate the number of incoming patients, thus increasing hospital availability and optimizing resource allocation. ML has been instrumental in the development of these systems. By embracing telemedicine and remote monitoring, healthcare management can facilitate the creation of online patient surveillance and monitoring systems, allowing for early medical intervention and ultimately improving the efficiency and effectiveness of medical services.

Originality/value

By offering a comprehensive panorama of ML's integration within healthcare institutions, this study underscores the pivotal role of innovation management in healthcare. The findings contribute to a holistic understanding of ML's applications in healthcare and emphasize their potential to transform and optimize healthcare delivery.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 27 February 2024

Oscar F. Bustinza, Luis M. Molina Fernandez and Marlene Mendoza Macías

Machine learning (ML) analytical tools are increasingly being considered as an alternative quantitative methodology in management research. This paper proposes a new approach for…

Abstract

Purpose

Machine learning (ML) analytical tools are increasingly being considered as an alternative quantitative methodology in management research. This paper proposes a new approach for uncovering the antecedents behind product and product–service innovation (PSI).

Design/methodology/approach

The ML approach is novel in the field of innovation antecedents at the country level. A sample of the Equatorian National Survey on Technology and Innovation, consisting of more than 6,000 firms, is used to rank the antecedents of innovation.

Findings

The analysis reveals that the antecedents of product and PSI are distinct, yet rooted in the principles of open innovation and competitive priorities.

Research limitations/implications

The analysis is based on a sample of Equatorian firms with the objective of showing how ML techniques are suitable for testing the antecedents of innovation in any other context.

Originality/value

The novel ML approach, in contrast to traditional quantitative analysis of the topic, can consider the full set of antecedent interactions to each of the innovations analyzed.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 6 December 2023

Ananya Hadadi Raghavendra, Siddharth Gaurav Majhi, Arindam Mukherjee and Pradip Kumar Bala

This study aims to examine the current state of academic research pertaining to the role played by artificial intelligence (AI) in the achievement of a critical sustainable…

Abstract

Purpose

This study aims to examine the current state of academic research pertaining to the role played by artificial intelligence (AI) in the achievement of a critical sustainable development goal (SDG) – poverty alleviation and describe the field’s development by identifying themes, trends, roadblocks and promising areas for the future.

Design/methodology/approach

The authors analysed a corpus of 253 studies collected from the Scopus database to examine the current state of the academic literature using bibliometric methods.

Findings

This paper identifies and analyses key trends in the evolution of this domain. Further, the paper distils the extant literature to unpack the intermediary mechanisms through which AI and related technologies help tackle the critical global issue of poverty.

Research limitations/implications

The corpus of literature used for the analysis is limited to English language studies from the Scopus database. The paper contributes to the extant research on AI for social good, and more broadly to the research on the value of emerging technologies such as AI.

Practical implications

Policymakers and government agencies will get an understanding of how technological interventions such as AI can help achieve critical SDGs such as poverty alleviation (SDG-1).

Social implications

The primary focus of this paper is on the role of AI-related technological interventions to achieve a significant social objective – poverty alleviation.

Originality/value

To the best of the authors’ knowledge, this is the first study to conduct a comprehensive bibliometric analysis of a critical research domain such as AI and poverty alleviation.

Details

VINE Journal of Information and Knowledge Management Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2059-5891

Keywords

1 – 10 of 456