Search results

1 – 5 of 5
Article
Publication date: 7 September 2015

Xia Yang and Jiancheng Li

The purpose of this paper is to discuss and evaluate the performances of the ionospheric delays for spaceborne global positioning system (GPS) receivers with changing altitudes…

Abstract

Purpose

The purpose of this paper is to discuss and evaluate the performances of the ionospheric delays for spaceborne global positioning system (GPS) receivers with changing altitudes, and to calculate the scale factors and receiver differential code biases (DCBs). Ionospheric delay is one of the major error sources in GPS positioning.

Design/methodology/approach

The fractional total electron content (TEC) above the receiver was obtained from the TEC above the Earth and a scale factor. Methods to determine scale factors were implemented and further developed, based on global ionospheric maps (GIM), Klobuchar model and modified Klobuchar model. Receiver DCB values were achieved at the same time. Methods were validated using flight data from the Gravity Recovery and Climate Experiment mission.

Findings

Scale factors are influenced by the receiver altitude, TECs along the line of sight and the ionospheric correction method. In a given case, scale factors obtained using GIM are more regular, whereas those obtained using Klobuchar model and modified Klobuchar model are closely related to TECs. DCBs obtained using GIM method are larger than those obtained using Klobuchar model and modified Klobuchar model.

Originality/value

With scale factors and receiver DCBs, accuracy of GPS positioning solutions can be improved, which are useful for spaceborne engineering applications.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 31 August 2020

Kamil Krasuski and Janusz Ćwiklak

The purpose of this paper is to present the problem of implementation of the differential global navigation satellite system (DGNSS) differential technique for aircraft accuracy…

Abstract

Purpose

The purpose of this paper is to present the problem of implementation of the differential global navigation satellite system (DGNSS) differential technique for aircraft accuracy positioning. The paper particularly focuses on identification and an analysis of the accuracy of aircraft positioning for the DGNSS measuring technique.

Design/methodology/approach

The investigation uses the DGNSS method of positioning, which is based on using the model of single code differences for global navigation satellite system (GNSS) observations. In the research experiment, the authors used single-frequency code observations in the global positioning system (GPS)/global navigation satellite system (GLONASS) system from the on-board receiver Topcon HiperPro and the reference station REF1 (reference station for the airport military EPDE in Deblin in south-eastern Poland). The geodetic Topcon HiperPro receiver was installed in Cessna 172 plane in the aviation test. The paper presents the new methodology in the DGNSS solution in air navigation. The aircraft position was estimated using a “weighted mean” scheme for differential global positioning system and differential global navigation satellite system solution, respectively. The final resultant position of aircraft was compared with precise real-time kinematic – on the fly solution.

Findings

In the investigations it was specified that the average accuracy of positioning the aircraft Cessna 172 in the geocentric coordinates XYZ equals approximately: +0.03 ÷ +0.33 m along the x-axis, −0.02 ÷ +0.14 m along the y-axis and approximately +0.02 ÷ −0.15 m along the z-axis. Moreover, the root mean square errors determining the measure of the accuracy of positioning of the Cessna 172 for the DGNSS differential technique in the geocentric coordinates XYZ, are below 1.2 m.

Research limitations/implications

In research, the data from GNSS onboard receiver and also GNSS reference receiver are needed. In addition, the pseudo-range corrections from the base stations were applied in the observation model of the DGNSS solution.

Practical implications

The presented research method can be used in a ground based augmentation system (GBAS) augmentation system, whereas the GBAS system is still not applied in Polish aviation.

Social implications

The paper is destined for people who work in the area of aviation and air transport.

Originality/value

The study presents the DGNSS differential technique as a precise method for recovery of aircraft position in civil aviation and this method can be also used in the positioning of aircraft based on GPS and GLONASS code observations.

Details

Sensor Review, vol. 40 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 8 November 2019

Kamil Krasuski, Janusz Cwiklak and Marek Grzegorzewski

This paper aims to present the problem of the integration of the global positioning system (GPS)/global navigation satellite system (GLONASS) data for the processing of aircraft…

Abstract

Purpose

This paper aims to present the problem of the integration of the global positioning system (GPS)/global navigation satellite system (GLONASS) data for the processing of aircraft position determination.

Design/methodology/approach

The aircraft coordinates were obtained based on GPS and GLONASS code observations for the single point positioning (SPP) method. The numerical computations were executed in the aircraft positioning software (APS) package. The mathematical scheme of equation observation of the SPP method was solved using least square estimation in stochastic processing. In the research experiment, the raw global navigation satellite system data from the Topcon HiperPro onboard receiver were applied.

Findings

In the paper, the mean errors of an aircraft position from APS were under 3 m. In addition, the accuracy of aircraft positioning was better than 6 m. The integrity term for horizontal protection level and vertical protection level parameters in the flight test was below 16 m.

Research limitations/implications

The paper presents only the application of GPS/GLONASS observations in aviation, without satellite data from other navigation systems.

Practical implications

The presented research method can be used in an aircraft based augmentation system in Polish aviation.

Social implications

The paper is addressed to persons who work in aviation and air transport.

Originality/value

The paper presents the SPP method as a satellite technique for the recovery of an aircraft position in an aviation test.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 October 2018

Kamil Krasuski

The purpose of this paper is based on implementation of Global Navigation Satellite System (GNSS) technique in civil aviation for recovery of aircraft position using Single Point…

Abstract

Purpose

The purpose of this paper is based on implementation of Global Navigation Satellite System (GNSS) technique in civil aviation for recovery of aircraft position using Single Point Positioning (SPP) method in kinematic mode.

Design/methodology/approach

The aircraft coordinates in ellipsoidal frame were obtained based on Global Positioning System (GPS) code observations for SPP method. The numerical computations were executed in post-processing mode in the Aircraft Positioning Software (APS) package. The mathematical scheme of equation observation of SPP method was solved using least square estimation in stochastic processing. In the experiment, airborne test using Cessna 172 aircraft on September 07, 2011 in the civil aerodrome in Mielec was realized. The aircraft position was recovery using observations data from Topcon HiperPro dual-frequency receiver with interval of 1 second.

Findings

In this paper, the average value of standard deviation of aircraft position is about 0.8 m for Latitude, 0.7 m for Longitude and 1.5 m for ellipsoidal height, respectively. In case of the Mean Radial Spherical Error (MRSE) parameter, the average value equals to 1.8 m. The standard deviation of receiver clock bias was presented in this paper and the average value amounts to 34.4 ns. In this paper, the safety protection levels of Horizontal Protection Level (HPL) and Vertical Protection Level (VPL) were also showed and described.

Research limitations/implications

In this paper, the analysis of aircraft positioning is focused on application the least square estimation in SPP method. The Kalman filtering operation can be also applied in SPP method for designation the position of the aircraft.

Practical implications

The SPP method can be applied in civil aviation for designation the position of the aircraft in Non-Precision Approach (NPA) GNSS procedure at the landing phase. The typical accuracy of aircraft position is better than 220 m for lateral navigation in NPA GNSS procedure. The limit of accuracy of aircraft position in vertical plane in NPA GNSS procedure is not available.

Social implications

This paper is destined for people who works in the area of aviation and air transport.

Originality/value

The work presents that SPP method as a universal technique for recovery of aircraft position in civil aviation, and this method can be also used in positioning of aircraft based on Global Navigation Satellite System (GLONASS) code observations.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 January 2018

Kamil Krasuski, Damian Wierzbicki and Henryk Jafernik

The purpose of this paper is to study the implementation of GNSS technique in aviation for recovery of aircraft’s position using Precise Point Positioning (PPP) method.

Abstract

Purpose

The purpose of this paper is to study the implementation of GNSS technique in aviation for recovery of aircraft’s position using Precise Point Positioning (PPP) method.

Design/methodology/approach

The aircraft’s coordinates in ellipsoidal frame were obtained based on GPS code and phase observations for PPP method. The numerical computations were executed in post-processing mode in the CSRS-PPP and magicPPP online services. The mathematical scheme of PPP method was development using indifference equations of Ionosphere-Free linear combination. In the experiment, airborne test using Cessna 172 aircraft on June 01, 2010 in the military airport in Deblin was realized. The aircraft’s position was determined using data from GNSS receiver (Topcon HiperPro with interval of 1 s).

Findings

In this paper, the accuracy of aircraft’s position is better than 0.07 m for CSRS-PPP service and better than 0.27 m for magicPPP service. In case of the Mean Radial Spherical Error parameter, the average value for CSRS-PPP service equals to 0.01 m, whereas for magicPPP, it is about 0.38 m. The values of vertical coordinate of Cessna 172 aircraft were also checked with results of Real Time Kinematic–On The Fly technique.

Research limitations/implications

In this paper, the analysis of aircraft positioning is focused on the application of the PPP method in post-processing mode. In near real time, the PPP method still has limitations, especially in the area of ambiguity resolution and also instrumental biases (e.g. Narrow Lane Hardware Delays).

Practical implications

The PPP method can be applied in aviation in post-processing mode for verification of true aircraft coordinates and elimination of blunder errors from adjustment processing of GNSS observations. The Zenith Wet Delay term as a product of troposphere delay and receiver clock bias as a product of precise time transfer can be obtained in the PPP method.

Originality/value

The paper presents that the PPP method is an alternative solution for the recovery of aircraft’s position in aviation, and this method can be also applied in the positioning of aircraft based on GLONASS or GPS/GLONASS data.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 5 of 5