Books and journals Case studies Expert Briefings Open Access
Advanced search

Aircraft positioning using SPP method in GPS system

Kamil Krasuski (Faculty of Geodesy, Cartography and Cadastre, Warsaw University of Technology, Warszawa, Poland)

Aircraft Engineering and Aerospace Technology

ISSN: 0002-2667

Publication date: 5 November 2018

Abstract

Purpose

The purpose of this paper is based on implementation of Global Navigation Satellite System (GNSS) technique in civil aviation for recovery of aircraft position using Single Point Positioning (SPP) method in kinematic mode.

Design/methodology/approach

The aircraft coordinates in ellipsoidal frame were obtained based on Global Positioning System (GPS) code observations for SPP method. The numerical computations were executed in post-processing mode in the Aircraft Positioning Software (APS) package. The mathematical scheme of equation observation of SPP method was solved using least square estimation in stochastic processing. In the experiment, airborne test using Cessna 172 aircraft on September 07, 2011 in the civil aerodrome in Mielec was realized. The aircraft position was recovery using observations data from Topcon HiperPro dual-frequency receiver with interval of 1 second.

Findings

In this paper, the average value of standard deviation of aircraft position is about 0.8 m for Latitude, 0.7 m for Longitude and 1.5 m for ellipsoidal height, respectively. In case of the Mean Radial Spherical Error (MRSE) parameter, the average value equals to 1.8 m. The standard deviation of receiver clock bias was presented in this paper and the average value amounts to 34.4 ns. In this paper, the safety protection levels of Horizontal Protection Level (HPL) and Vertical Protection Level (VPL) were also showed and described.

Research limitations/implications

In this paper, the analysis of aircraft positioning is focused on application the least square estimation in SPP method. The Kalman filtering operation can be also applied in SPP method for designation the position of the aircraft.

Practical implications

The SPP method can be applied in civil aviation for designation the position of the aircraft in Non-Precision Approach (NPA) GNSS procedure at the landing phase. The typical accuracy of aircraft position is better than 220 m for lateral navigation in NPA GNSS procedure. The limit of accuracy of aircraft position in vertical plane in NPA GNSS procedure is not available.

Social implications

This paper is destined for people who works in the area of aviation and air transport.

Originality/value

The work presents that SPP method as a universal technique for recovery of aircraft position in civil aviation, and this method can be also used in positioning of aircraft based on Global Navigation Satellite System (GLONASS) code observations.

Keywords

  • GPS
  • Accuracy
  • MRSE
  • HPL
  • SPP method
  • VPL

Acknowledgements

The author would like to thanks for PhD Janusz Ćwiklak (PAFA, Dęblin) for available RINEX files from flight experiment in Mielec’2011.

Citation

Krasuski, K. (2018), "Aircraft positioning using SPP method in GPS system", Aircraft Engineering and Aerospace Technology, Vol. 90 No. 8, pp. 1213-1220. https://doi.org/10.1108/AEAT-03-2017-0087

Download as .RIS

Publisher

:

Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Please note you do not have access to teaching notes

You may be able to access teaching notes by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
If you think you should have access to this content, click the button to contact our support team.
Contact us

To read the full version of this content please select one of the options below

You may be able to access this content by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
To rent this content from Deepdyve, please click the button.
Rent from Deepdyve
If you think you should have access to this content, click the button to contact our support team.
Contact us
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here