Search results

1 – 10 of 990
Article
Publication date: 8 May 2024

Minghao Wang, Ming Cong, Yu Du, Huageng Zhong and Dong Liu

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no…

Abstract

Purpose

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no longer satisfied with enabling robots to build maps by remote control, more needs will focus on the autonomous exploration of unknown areas, which refer to the low light, complex spatial features and a series of unstructured environment, lick underground special space (dark and multiintersection). This study aims to propose a novel robot structure with mapping and autonomous exploration algorithms. The experiment proves the detection ability of the robot.

Design/methodology/approach

A small bio-inspired mobile robot suitable for underground special space (dark and multiintersection) is designed, and the control system is set up based on STM32 and Jetson Nano. The robot is equipped with double laser sensor and Ackerman chassis structure, which can adapt to the practical requirements of exploration in underground special space. Based on the graph optimization SLAM method, an optimization method for map construction is proposed. The Iterative Closest Point (ICP) algorithm is used to match two frames of laser to recalculate the relative pose of the robot, which improves the sensor utilization rate of the robot in underground space and also increase the synchronous positioning accuracy. Moreover, based on boundary cells and rapidly-exploring random tree (RRT) algorithm, a new Bio-RRT method for robot autonomous exploration is proposed in addition.

Findings

According to the experimental results, it can be seen that the upgraded SLAM method proposed in this paper achieves better results in map construction. At the same time, the algorithm presents good real-time performance as well as high accuracy and strong maintainability, particularly it can update the map continuously with the passing of time and ensure the positioning accuracy in the process of map updating. The Bio-RRT method fused with the firing excitation mechanism of boundary cells has a more purposeful random tree growth. The number of random tree expansion nodes is less, and the amount of information to be processed is reduced, which leads to the path planning time shorter and the efficiency higher. In addition, the target bias makes the random tree grow directly toward the target point with a certain probability, and the obtained path nodes are basically distributed on or on both sides of the line between the initial point and the target point, which makes the path length shorter and reduces the moving cost of the mobile robot. The final experimental results demonstrate that the proposed upgraded SLAM and Bio-RRT methods can better complete the underground special space exploration task.

Originality/value

Based on the background of robot autonomous exploration in underground special space, a new bio-inspired mobile robot structure with mapping and autonomous exploration algorithm is proposed in this paper. The robot structure is constructed, and the perceptual unit, control unit, driving unit and communication unit are described in detail. The robot can satisfy the practical requirements of exploring the underground dark and multiintersection space. Then, the upgraded graph optimization laser SLAM algorithm and interframe matching optimization method are proposed in this paper. The Bio-RRT independent exploration method is finally proposed, which takes shorter time in equally open space and the search strategy for multiintersection space is more efficient. The experimental results demonstrate that the proposed upgrade SLAM and Bio-RRT methods can better complete the underground space exploration task.

Details

Robotic Intelligence and Automation, vol. 44 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 11 July 2023

Yuze Shang, Fei Liu, Ping Qin, Zhizhong Guo and Zhe Li

The goal of this research is to develop a dynamic step path planning algorithm based on the rapidly exploring random tree (RRT) algorithm that combines Q-learning with the…

Abstract

Purpose

The goal of this research is to develop a dynamic step path planning algorithm based on the rapidly exploring random tree (RRT) algorithm that combines Q-learning with the Gaussian distribution of obstacles. A route for autonomous vehicles may be swiftly created using this algorithm.

Design/methodology/approach

The path planning issue is divided into three key steps by the authors. First, the tree expansion is sped up by the dynamic step size using a combination of Q-learning and the Gaussian distribution of obstacles. The invalid nodes are then removed from the initially created pathways using bidirectional pruning. B-splines are then employed to smooth the predicted pathways.

Findings

The algorithm is validated using simulations on straight and curved highways, respectively. The results show that the approach can provide a smooth, safe route that complies with vehicle motion laws.

Originality/value

An improved RRT algorithm based on Q-learning and obstacle Gaussian distribution (QGD-RRT) is proposed for the path planning of self-driving vehicles. Unlike previous methods, the authors use Q-learning to steer the tree's development direction. After that, the step size is dynamically altered following the density of the obstacle distribution to produce the initial path rapidly and cut down on planning time even further. In the aim to provide a smooth and secure path that complies with the vehicle kinematic and dynamical restrictions, the path is lastly optimized using an enhanced bidirectional pruning technique.

Details

Engineering Computations, vol. 40 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 May 2021

Luitpold Babel

A major challenge for mission planning of aircraft is to generate flight paths in highly dynamic environments. This paper presents a new approach for online flight path planning…

Abstract

Purpose

A major challenge for mission planning of aircraft is to generate flight paths in highly dynamic environments. This paper presents a new approach for online flight path planning with flight time constraints for fixed-wing UAVs. The flight paths must take into account the kinematic restrictions of the vehicle and be collision-free with terrain, obstacles and no-fly areas. Moreover, the flight paths are subject to time constraints such as predetermined time of arrival at the target or arrival within a specified time interval.

Design/methodology/approach

The proposed flight path planning algorithm is an evolution of the well-known RRT* algorithm. It uses three-dimensional Dubins paths to reflect the flight capabilities of the air vehicle. Requirements for the flight time are realized by skillfully concatenating two rapidly exploring random trees rooted in the start and target point, respectively.

Findings

The approach allows to consider static obstacles, obstacles which might pop up unexpectedly, as well as moving obstacles. Targets might be static or moving with constantly changing course. Even a change of the target during flight, a change of the target approach direction or a change of the requested time of arrival is included.

Originality/value

The capability of the flight path algorithm is demonstrated by simulation results. Response times of fractions of a second qualify the algorithm for real-time applications in highly dynamic scenarios.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 6 January 2012

Biyun Xie, Jing Zhao and Yu Liu

The purpose of this paper is to present a new nested rapidlyexploring random tree (RRT) algorithm for fault tolerant motion planning of robotic manipulators.

Abstract

Purpose

The purpose of this paper is to present a new nested rapidlyexploring random tree (RRT) algorithm for fault tolerant motion planning of robotic manipulators.

Design/methodology/approach

Another RRT algorithm is nested within the general RRT algorithm. This second nested level is used to check whether the new sampled node in the first nested level is fault tolerant. If a solution can be found in the second nested RRT, the reduced manipulator after failures at the new sampled node can still fulfill the remaining task and this new sampled node is added into the nodes of RRT in the first level. Thus, the nodes in the first level RRT algorithm are all fault tolerant postures. The final trajectory joined by these nodes is also obviously fault tolerant. Besides fault tolerance, this new nested RRT algorithm also can fulfill some secondary tasks such as improvement of dexterity and obstacle avoidance. Sufficient simulations and experiments of this new algorithm on fault tolerant motion planning of robotic manipulators are implemented.

Findings

It is found that the new nested RRT algorithm can fulfill fault tolerance and some other secondary tasks at the same time. Compared to other existing fault tolerant algorithms, this new algorithm is more efficient.

Originality/value

The paper presents a new nested RRT algorithm for fault tolerant motion planning.

Details

Industrial Robot: An International Journal, vol. 39 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 February 2024

Xiaohui Jia, Chunrui Tang, Xiangbo Zhang and Jinyue Liu

This study aims to propose an efficient dual-robot task collaboration strategy to address the issue of low work efficiency and inability to meet the production needs of a single…

Abstract

Purpose

This study aims to propose an efficient dual-robot task collaboration strategy to address the issue of low work efficiency and inability to meet the production needs of a single robot during construction operations.

Design/methodology/approach

A hybrid task allocation method based on integer programming and auction algorithms, with the aim of achieving a balanced workload between two robots has been proposed. In addition, while ensuring reasonable workload allocation between the two robots, an improved dual ant colony algorithm was used to solve the dual traveling salesman problem, and the global path planning of the two robots was determined, resulting in an efficient and collision-free path for the dual robots to operate. Meanwhile, an improved fast Random tree rapidly-exploring random tree algorithm is introduced as a local obstacle avoidance strategy.

Findings

The proposed method combines randomization and iteration techniques to achieve an efficient task allocation strategy for two robots, ensuring the relative optimal global path of the two robots in cooperation and solving complex local obstacle avoidance problems.

Originality/value

This method is applied to the scene of steel bar tying in construction work, with the workload allocation and collaborative work between two robots as evaluation indicators. The experimental results show that this method can efficiently complete the steel bar banding operation, effectively reduce the interference between the two robots and minimize the interference of obstacles in the environment.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 August 2017

Du Lin, Bo Shen, Yurong Liu, Fuad E. Alsaadi and Ahmed Alsaedi

The purpose of this paper is to improve the performance of the genetic algorithm-based compliant robot path planning (GACRPP) in complex dynamic environment by proposing an…

Abstract

Purpose

The purpose of this paper is to improve the performance of the genetic algorithm-based compliant robot path planning (GACRPP) in complex dynamic environment by proposing an improved bidirectional rapidly exploring random tree (Bi-RRT)-based population initialization method.

Design/methodology/approach

To achieve GACRPP in complex dynamic environment with high performance, an improved Bi-RRT-based population initialization method is proposed. First, the grid model is adopted to preprocess the working space of mobile robot. Second, an improved Bi-RRT is proposed to create multi-cluster connections between the starting point and the goal point. Third, the backtracking method is used to generate the initial population based on the multi-cluster connections generated by the improved Bi-RRT. Subsequently, some comparative experiments are implemented where the performances of the improved Bi-RRT-based population initialization method are compared with other population initialization methods, and the comparison results of the improved genetic algorithm (IGA) combining with the different population initialization methods are shown. Finally, the optimal path is further smoothed with the help of the technique of quadratic B-spline curves.

Findings

It is shown in the experiment results that the improved Bi-RRT-based population initialization method is capable of deriving a more diversified initial population with less execution time and the IGA combining with the proposed population initialization method outperforms the one with other population initialization methods in terms of the length of optimal path and the execution time.

Originality/value

In this paper, the Bi-RRT is introduced as a population initialization method into the GACRPP problem. An improved Bi-RRT is proposed for the purpose of increasing the diversity of initial population. To characterize the diversity of initial population, a new notion of breadth is defined in terms of Hausdorff distance between different paths.

Details

Assembly Automation, vol. 37 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 16 January 2020

Joanne Pransky

The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal…

Abstract

Purpose

The following article is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned entrepreneur regarding his pioneering efforts of bringing technological inventions to market. The paper aims to discuss these issues.

Design/methodology/approach

The interviewee is Dr James Kuffner, CEO at Toyota Research Institute Advanced Development (TRI-AD). Kuffner is a proven entrepreneur and inventor in robot and motion planning and cloud robotics. In this interview, Kuffner shares his personal and professional journey from conceptualization to commercial realization.

Findings

Dr Kuffner received BS, MS and PhD degrees from the Stanford University’s Department of Computer Science Robotics Laboratory. He was a Japan Society for the Promotion of Science (JSPS) Postdoctoral Research Fellow at the University of Tokyo where he worked on software and planning algorithms for humanoid robots. He joined the faculty at Carnegie Mellon University’s Robotics Institute in 2002 where he served until March 2018. Kuffner was a Research Scientist and Engineering Director at Google from 2009 to 2016. In January 2016, he joined TRI where he was appointed the Chief Technology Officer and Area Lead, Cloud Intelligence and is presently an Executive Advisor. He has been CEO of TRI-AD since April of 2018.

Originality/value

Dr Kuffner is perhaps best known as the co-inventor of the rapidly exploring random tree (RRT) algorithm, which has become a key standard benchmark for robot motion planning. He is also known for introducing the term “Cloud Robotics” in 2010 to describe how network-connected robots could take advantage of distributed computation and data stored in the cloud. Kuffner was part of the initial engineering team that built Google’s self-driving car. He was appointed Head of Google’s Robotics Division in 2014, which he co-founded with Andy Rubin to help realize the original Cloud Robotics concept. Kuffner also co-founded Motion Factory, where he was the Senior Software Engineer and a member of the engineering team to develop C++ based authoring tools for high-level graphic animation and interactive multimedia content. Motion Factory was acquired by SoftImage in 2000. In May 2007, Kuffner founded, and became the Director of Robot Autonomy where he coordinated research and software consulting for industrial and consumer robotics applications. In 2008, he assisted in the iOS development of Jibbigo, the first on-phone, real-time speech recognition, translation and speech synthesis application for the iPhone. Jibbigo was acquired by Facebook in 2013. Kuffner is one of the most highly cited authors in the field of robotics and motion planning, with over 15,000 citations. He has published over 125 technical papers and was issued more than 50 patents related to robotics and computer vision technology.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 May 2024

Andong Liu, Yawen Zhang, Jiayun Fu, Yuankun Yan and Wen-An Zhang

In response to the issue of traditional algorithms often falling into local minima or failing to find feasible solutions in manipulator path planning. The purpose of this paper is…

Abstract

Purpose

In response to the issue of traditional algorithms often falling into local minima or failing to find feasible solutions in manipulator path planning. The purpose of this paper is to propose a 3D artificial moment method (3D-AMM) for obstacle avoidance for the robotic arm's end-effector.

Design/methodology/approach

A new method for constructing temporary attractive points in 3D has been introduced using the vector triple product approach, which generates the attractive moments that attract the end-effector to move toward it. Second, distance weight factorization and spatial projection methods are introduced to improve the solution of repulsive moments in multiobstacle scenarios. Third, a novel motion vector-solving mechanism is proposed to provide nonzero velocity for the end-effector to solve the problem of limiting the solution of the motion vector to a fixed coordinate plane due to dimensionality constraints.

Findings

A comparative analysis was conducted between the proposed algorithm and the existing methods, the improved artificial potential field method and the rapidly-random tree method under identical simulation conditions. The results indicate that the 3D-AMM method successfully plans paths with smoother trajectories and reduces the path length by 20.03% to 36.9%. Additionally, the experimental comparison outcomes affirm the feasibility and effectiveness of this method for obstacle avoidance in industrial scenarios.

Originality/value

This paper proposes a 3D-AMM algorithm for manipulator path planning in Cartesian space with multiple obstacles. This method effectively solves the problem of the artificial potential field method easily falling into local minimum points and the low path planning success rate of the rapidly-exploring random tree method.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 June 2019

Samia Ben Amarat and Peng Zong

This paper aims to present a comprehensive review in major research areas of unmanned air vehicles (UAVs) navigation, i.e. three degree-of-freedom (3D) path planning, routing…

1149

Abstract

Purpose

This paper aims to present a comprehensive review in major research areas of unmanned air vehicles (UAVs) navigation, i.e. three degree-of-freedom (3D) path planning, routing algorithm and routing protocols. The paper is further aimed to provide a meaningful comparison among these algorithms and methods and also intend to find the best ones for a particular application.

Design/methodology/approach

The major UAV navigation research areas are further classified into different categories based on methods and models. Each category is discussed in detail with updated research work done in that very domain. Performance evaluation criteria are defined separately for each category. Based on these criteria and research challenges, research questions are also proposed in this work and answered in discussion according to the presented literature review.

Findings

The research has found that conventional and node-based algorithms are a popular choice for path planning. Similarly, the graph-based methods are preferred for route planning and hybrid routing protocols are proved better in providing performance. The research has also found promising areas for future research directions, i.e. critical link method for UAV path planning and queuing theory as a routing algorithm for large UAV networks.

Originality/value

The proposed work is a first attempt to provide a comprehensive study on all research aspects of UAV navigation. In addition, a comparison of these methods, algorithms and techniques based on standard performance criteria is also presented the very first time.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 August 2024

Meijiao Zhao, Yidi Wang and Wei Zheng

Loitering aerial vehicle (LAV) swarm safety flight control is an unmanned system control problem under multiple constraints, which are derived to prevent the LAVs from suffering…

Abstract

Purpose

Loitering aerial vehicle (LAV) swarm safety flight control is an unmanned system control problem under multiple constraints, which are derived to prevent the LAVs from suffering risks inside and outside the swarms. The computational complexity of the safety flight control problem grows as the number of LAVs and of the constraints increases. Besides some important constraints, the swarms will encounter with sudden appearing risks in a hostile environment. The purpose of this study is to design a safety flight control algorithm for LAV swarm, which can timely respond to sudden appearing risks and reduce the computational burden.

Design/methodology/approach

To address the problem, this paper proposes a distributed safety flight control algorithm that includes a trajectory planning stage using kinodynamic rapidly exploring random trees (KRRT*) and a tracking stage based on distributed model predictive control (DMPC).

Findings

The proposed algorithm reduces the computational burden of the safety flight control problem and can fast find optimal flight trajectories for the LAVs in a swarm even there are multi-constraints and sudden appearing risks.

Originality/value

The proposed algorithm did not handle the constraints synchronously, but first uses the KRRT* to handle some constraints, and then uses the DMPC to deal with the rest constraints. In addition, the proposed algorithm can effectively respond to sudden appearing risks by online re-plan the trajectories of LAVs within the swarm.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 990