Search results

1 – 10 of 30
Article
Publication date: 27 December 2022

Efrida Basri, Resa Martha, Ratih Damayanti, Istie Rahayu, Wayan Darmawan and Philippe Gérardin

The surface characteristics of thermally and chemically modified wood, such as surface roughness, surface free energy (SFE) and wettability, are important properties that…

Abstract

Purpose

The surface characteristics of thermally and chemically modified wood, such as surface roughness, surface free energy (SFE) and wettability, are important properties that influence further manufacturing processes such as gluing and coating. The aim of this paper was to determine the influence of the surface roughness of thermally and chemically modified teak wood on their SFE, wettability and bonding quality for water-based acrylic and solvent-based alkyd varnishes. In addition, durability against subterranean termites in the field of these modified teak woods was also investigated to give a valuable information for their further application.

Design/methodology/approach

The woods tested in this study were fast-growing teak woods that were prepared in untreated and treated with furfuryl alcohol (FA), glycerol maleic anhydride (GMA) and thermal. SFE values were calculated using the Rabel method. The wettability values were measured based on the contact angle between varnish liquids and wood surfaces using the sessile drop method, and the Shi and Gardner model model was used to evaluate the wettability of the varnishes on the wood surface. The bonding quality of the varnishes was measured using a cross-cut test based on ASTM 3359-17 standard. In addition, durability against subterranean termites in the field of these modified teak woods was also investigated according to ASTM D 1758-06.

Findings

The results showed that furfurylated and GMA-thermal 220°C improved the durability of teak wood against termites. The furfurylated teak wood had the roughest surface with an arithmetic average roughness (Ra) value of 15.65 µm before aging and 27.11 µm after aging. The GMA-thermal 220°C treated teak wood was the smoothest surface with Ra value of 6.44 µm before aging and 13.75 µm after aging. Untreated teak wood had the highest SFE value of 46.90 and 57.37 mJ/m2 before and after aging, respectively. The K values of untreated and treated teak wood increased owing to the aging treatment. The K values for the water-based acrylic varnish were lower than that of the solvent-based alkyd varnish. The untreated teak wood with the highest SFE produced the highest bonding quality (grades 4–5) for both acrylic and alkyd varnishes. The solvent-based alkyd varnish was more wettable and generated better bonding quality than the water-based acrylic varnish.

Originality/value

The originality of this research work is that it provides evaluation values of the durability and SFE. The SFE value can be used to quantitatively determine the wettability of paint liquids on the surface of wood and its varnish bonding quality.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 May 2024

Ashish Paul, Bhagyashri Patgiri and Neelav Sarma

Flow induced by rotating disks is of great practical importance in several engineering applications such as rotating heat exchangers, turbine disks, pumps and many more. The…

Abstract

Purpose

Flow induced by rotating disks is of great practical importance in several engineering applications such as rotating heat exchangers, turbine disks, pumps and many more. The present research has been freshly displayed regarding the implementation of an engine oil-based Casson tri-hybrid nanofluid across a rotating disk in mass and heat transferal developments. The purpose of this study is to contemplate the attributes of the flowing tri-hybrid nanofluid by incorporating porosity effects and magnetization and velocity slip effects, viscous dissipation, radiating flux, temperature slip, chemical reaction and activation energy.

Design/methodology/approach

The articulated fluid flow is described by a set of partial differential equations which are converted into one set of higher-order ordinary differential equations (ODEs) by using convenient conversions. The numerical solution of this transformed set of ODEs has been spearheaded by using the effectual bvp4c scheme.

Findings

The acquired results show that the heat transmission rate for the Casson tri-hybrid nanofluid is intensified by, respectively, 9.54% and 11.93% when compared to the Casson hybrid nanofluid and Casson nanofluid. Also, the mass transmission rate for the Casson tri-hybrid nanofluid is augmented by 1.09% and 2.14%, respectively, when compared to the Casson hybrid nanofluid and Casson nanofluid.

Originality/value

The current investigation presents an educative response on how the flow profiles vary with changes in the inevitable flow parameters. As per authors’ knowledge, no such scrutinization has been carried out previously; therefore, our results are novel and unique.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 January 2024

Zhenkun Li, Zhili Zhao, Jinliang Liu and Xin Ding

To solve the problems caused by using precise molds for copper column positioning in the current column grid array package, this paper aims to optimize the proposed friction…

Abstract

Purpose

To solve the problems caused by using precise molds for copper column positioning in the current column grid array package, this paper aims to optimize the proposed friction plunge micro-welding (FPMW) technology without mold assistance, to overcome the problems of low interfacial bonding strength, shrinkage cavities and flash defects caused by the low hold-tight force of solder on the copper column.

Design/methodology/approach

A pressurizing device installed under the drill chuck of the friction welding machine is designed, which is used to apply a static constraint to the solder ball obliquely downward to increase the hold-tight force of the peripheral solder on the copper column during welding and promote the friction metallurgical connection between them.

Findings

The results show that the application of static constraint during welding can increase the compactness of the solder near the friction interface and effectively inhibit occurrences of flash, shrinkage cavities and crystal defects such as vacancies. Therefore, compared with the unconstrained (UC) FPMW, the average strength of the statically constrained (SC) FPMW joints and aged SC-FPMW joints can be increased by 51.1% and 122.6%, and the problem of the excessive growth of the interfacial connection layer in the UC-FPMW joints during aging can be effectively avoided.

Originality/value

The application of static constraint effectively inhibits the occurrence of defects such as shrinkage cavities, vacancies and flash in FPMW joints, and the welding quality is significantly improved.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 30 April 2024

Amin Barzegar, Mohammadreza Farahani and Amirreza Gomroki

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable…

Abstract

Purpose

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable advantages of material extrusion-based technique, the poor surface and subsurface integrity hinder the industrial application of this technology. The purpose of this study is introducing the hot air jet treatment (HAJ) technique for surface treatment of additive manufactured parts.

Design/methodology/approach

In the presented research, novel theoretical formulation and finite element models are developed to study and model the polishing mechanism of printed parts surface through the HAJ technique. The model correlates reflow material volume, layer width and layer height. The reflow material volume is a function of treatment temperature, treatment velocity and HAJ velocity. The values of reflow material volume are obtained through the finite element modeling model due to the complexity of the interactions between thermal and mechanical phenomena. The theoretical model presumptions are validated through experiments, and the results show that the treatment parameters have a significant impact on the surface characteristics, hardness and dimensional variations of the treated surface.

Findings

The results demonstrate that the average value of error between the calculated theoretical results and experimental results is 14.3%. Meanwhile, the 3D plots of Ra and Rq revealed that the maximum values of Ra and Rq reduction percentages at 255°C, 270°C, 285°C and 300°C treatment temperatures are (35.9%, 33.9%), (77.6%,76.4%), (94%, 93.8%) and (85.1%, 84%), respectively. The scanning electron microscope results illustrate three different treatment zones and the treatment-induced and manufacturing-induced entrapped air relief phenomenon. The measured results of hardness variation percentages and dimensional deviation percentages at different regimes are (8.33%, 0.19%), (10.55%, 0.31%) and (−0.27%, 0.34%), respectively.

Originality/value

While some studies have investigated the effect of the HAJ process on the structural integrity of manufactured items, there is a dearth of research on the underlying treatment mechanism, the integrity of the treated surface and the subsurface characteristics of the treated surface.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 11 April 2023

Qian Long Kweh, Hanh Thi My Le, Irene Wei Kiong Ting and Wen-Min Lu

First, this study assesses the link between research and development (R&D) expenses and firm efficiency. Second, this study explores how family control moderates the link between…

Abstract

Purpose

First, this study assesses the link between research and development (R&D) expenses and firm efficiency. Second, this study explores how family control moderates the link between the two.

Design/methodology/approach

This study uses two measures of time-based firm efficiency, namely, a window slacks-based measure (WSBM) and a window epsilon-based measure (WEBM) of data envelopment analysis (DEA). Then, 216 firm-year observations are analyzed in the Taiwanese cultural and creative industries from 2005 to 2017.

Findings

This study finds that R&D expenses significantly worsen firm efficiency, and that family control positively moderates this effect. A further test separating the sample into family-controlled and nonfamily-controlled firms indicates that R&D expenses negatively affect the efficiency of nonfamily-controlled firms but positively affect that of family-controlled firms.

Research limitations/implications

The existing literature has examined the link between R&D expenses and corporate performance. However, the process by which R&D expenses affect corporate performance from a production perspective remains unknown.

Originality/value

Overall, this study provides insights for policymakers to scrutinize resource management and R&D expenses from the production and resource-based perspectives.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 31 January 2024

Olubukola Tokede and Anastasia Globa

This paper bridges the gap between the theory and practice by developing a life cycle sustainability tracker (LCST). The study is seeking to proffer solutions to an observed…

91

Abstract

Purpose

This paper bridges the gap between the theory and practice by developing a life cycle sustainability tracker (LCST). The study is seeking to proffer solutions to an observed shortcoming of conventional life cycle sustainability assessment (LCSA) communication platforms. Notably, the static nature of the information provided on such platforms has made it difficult for them to be used for real-time decision-making and predictions. The main aim of this paper is to develop a LCST that facilitates a dynamic visualisation of life cycle sustainability results and allows for an integrated benchmark across the dimensions of sustainability.

Design/methodology/approach

The study leverages the model development capabilities of the design science research strategy in accomplishing a dynamic and novel communication platform. A life cycle thinking methodology and appropriate multicriteria decision approach (MCDA) is applied to accomplish a comprehensive, streamlined and replicable approach in mapping and tracking the progress of sustainable development goals (SDGs) in the National Infrastructure Pipeline (NIP) projects in India.

Findings

It was found that: (1) The use of the LCST tracker provides a dynamic and holistic insight into the key LCSA indicators with clearly defined benchmarks to assess the impact on the SDG 11, (2) The NIP projects achieve an upward trend across all the regions, and the percentage of opportunities ranges from 11 to 24%, with the South experiencing the highest growth and the North having the minimal increase in percentage and (3) The assessment score (52–58%) provides performance metrics that align well with the LCST – which ranges between “Fair” and “Average” for all the regions in India.

Originality/value

The novelty of this research is that the LCST provides a transparent and harmonised approach to reporting on the LCSA results. The LCST utilises heat maps and radial mapping to achieve an intuitive display of large amounts of highly heterogeneous data, thus allowing the synthesis of large sets of information compactly and with coherence. Progress towards the SDGs change on a yearly basis; hence, a dynamic LCSA tool provides a timely and the valuable context to map and track performance across different regions and contexts.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 May 2023

Peipei Wang, Kun Wang, Yunhan Huang and Peter Fenn

Time-cost trade-off is normal conduct in construction projects when projects are expectedly late for delivery. Existing research on time-cost trade-off strategic management mostly…

Abstract

Purpose

Time-cost trade-off is normal conduct in construction projects when projects are expectedly late for delivery. Existing research on time-cost trade-off strategic management mostly focused on the technical calculation towards the optimal combination of activities to be accelerated, while the managerial aspects are mostly neglected. This paper aims to understand the managerial efforts necessary to prepare construction projects ready for an upcoming trade-off implementation.

Design/methodology/approach

A preliminary list of critical factors was first identified from the literature and verified by a Delphi survey. Quantitative data was then collected by a questionnaire survey to first shortlist the preliminary factors and quantify the predictive model with different machine learning algorithms, i.e. k-nearest neighbours (kNN), radial basis function (RBF), multiplayer perceptron (MLP), multinomial logistic regression (MLR), naïve Bayes classifier (NBC) and Bayesian belief networks (BBNs).

Findings

The model's independent variable importance ranking revealed that the top challenges faced were the realism of contractual obligation, contractor planning and control and client management and monitoring. Among the tested machine learning algorithms, multilayer perceptron was demonstrated to be the most suitable in this case. This model accuracy reached 96.5% with the training dataset and 95.6% with an independent test dataset and could be used as the contingency approach for time-cost trade-offs.

Originality/value

The identified factor list contributed to the theoretical explanation of the failed implementation in general and practical managerial improvement to better avoid such failure. In addition, the established predictive model provided an ad-hoc early warning and diagnostic tool to better ensure time-cost implementation success.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 February 2024

Md Atiqur Rahman

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and…

Abstract

Purpose

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and opposite-oriented trapezoidal air deflectors attached at different angles. The deflectors are spaced at various distances, and the tubes are arranged in a circular pattern while maintaining a constant heat flux.

Design/methodology/approach

This setup is housed inside a circular duct with airflow in the longitudinal direction. The study examined the impact of different inclination angles and pitch ratios on the performance of the heat exchanger within a specific range of Reynolds numbers.

Findings

The findings revealed that the angle of inclination significantly affected the flow velocity, with higher angles resulting in increased velocity. The heat transfer performance was best at lower inclination angles and pitch ratios. Flow resistance decreased with increasing angle of inclination and pitch ratio.

Originality/value

The average thermal enhancement factor decreased with higher inclination angles, with the maximum value observed as 0.94 at a pitch ratio of 1 at an angle of 30°.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 March 2024

Himanshu Seth, Deepak Deepak, Namita Ruparel, Saurabh Chadha and Shivi Agarwal

This study aims to assess the efficiency of managing working capital in 1,388 Indian manufacturing firms from 2008 to 2019 and investigate the effects of firm-specific and…

Abstract

Purpose

This study aims to assess the efficiency of managing working capital in 1,388 Indian manufacturing firms from 2008 to 2019 and investigate the effects of firm-specific and macro-level determinants on working capital management (WCM) efficiency.

Design/methodology/approach

The current study accommodates a slack-based measure (SBM) in data envelopment analysis (DEA) for computing WCM efficiency. Further, we implement a panel data fixed-effects model that controls for heterogeneity across firms in determining the relationships of selected variables with WCM efficiency.

Findings

The results highlight that manufacturing firms operate at around 50 percent efficiency, which is constant throughout the study period. Furthermore, among the selected variables, yield, earnings, age, size, ability to create internal resources, interest rate and gross domestic product (GDP) significantly affect WCM efficiency.

Originality/value

Instead of the traditional models used for assessing efficiency, the SBM-DEA model is unit-invariant and monotone for slacks, implying that it can handle zero and negative data, which overcomes the incapability of prior DEA models. Hence, this provides accurate efficiency scores for robust analysis. Additionally, this paper provides a holistic working capital model recognizing firm-specific and macro-level determinants for a more explicit estimation of the relationship between WCM efficiency and the selected determinants.

Details

Managerial Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0307-4358

Keywords

1 – 10 of 30