Search results

1 – 10 of 20
Open Access
Article
Publication date: 22 November 2023

En-Ze Rui, Guang-Zhi Zeng, Yi-Qing Ni, Zheng-Wei Chen and Shuo Hao

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural…

Abstract

Purpose

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural network (PINN), which was proposed to encode physical laws into neural networks, is a less data-demanding approach for flow field reconstruction. However, when the fluid physics is complex, it is tricky to obtain accurate solutions under the PINN framework. This study aims to propose a physics-based data-driven approach for time-averaged flow field reconstruction which can overcome the hurdles of the above methods.

Design/methodology/approach

A multifidelity strategy leveraging PINN and a nonlinear information fusion (NIF) algorithm is proposed. Plentiful low-fidelity data are generated from the predictions of a PINN which is constructed purely using Reynold-averaged Navier–Stokes equations, while sparse high-fidelity data are obtained by field or experimental measurements. The NIF algorithm is performed to elicit a multifidelity model, which blends the nonlinear cross-correlation information between low- and high-fidelity data.

Findings

Two experimental cases are used to verify the capability and efficacy of the proposed strategy through comparison with other widely used strategies. It is revealed that the missing flow information within the whole computational domain can be favorably recovered by the proposed multifidelity strategy with use of sparse measurement/experimental data. The elicited multifidelity model inherits the underlying physics inherent in low-fidelity PINN predictions and rectifies the low-fidelity predictions over the whole computational domain. The proposed strategy is much superior to other contrastive strategies in terms of the accuracy of reconstruction.

Originality/value

In this study, a physics-informed data-driven strategy for time-averaged flow field reconstruction is proposed which extends the applicability of the PINN framework. In addition, embedding physical laws when training the multifidelity model leads to less data demand for model development compared to purely data-driven methods for flow field reconstruction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 February 2024

Zejian Huang, Yihua Cao and Yanyang Wang

The sandy environment is one of the typical environments in which helicopters operate. Air-sand two-phase flow in sandy environments may be an important factor affecting flight…

Abstract

Purpose

The sandy environment is one of the typical environments in which helicopters operate. Air-sand two-phase flow in sandy environments may be an important factor affecting flight safety. Taking a typical example, this paper aims to investigate the aerodynamic and rotor trim characteristics of the UH-60 helicopter in sandy environments.

Design/methodology/approach

A computational study is conducted to simulate the air-sand flow over airfoils based on the Euler–Lagrange framework. The simulation uses the S-A turbulence model and the two-way momentum coupling methodology. Additionally, the trim characteristics of the UH-60 rotor are calculated based on the isolated rotor trim algorithm.

Findings

The simulation results show that air-sand flow significantly affects the aerodynamic characteristics of the SC1095 airfoil and the SC1094R8 airfoil. The presence of sand particles leads to a decrease in lift and an increase in drag. The calculation results of the UH-60 helicopter rotor indicate that the thrust decreases and the torque increases in the sandy environment. To maintain a steady forward flight in sandy environments, it is necessary to increase the collective pitch and the longitudinal cyclic pitch.

Originality/value

In this paper, the aerodynamic characteristics of airfoils and the trim characteristics in the air-sand flow of the UH-60 helicopter are discussed, which might be a new view to analyse the impact of sandy environments on helicopter safety and manoeuvring.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 November 2023

Jianbin Luo, Yuanhao Tie, Ke Mi, Yajuan Pan, Lifei Tang, Yuan Li, Hongxiang Xu, Zhonghang Liu, Mingsen Li and Chunmei Jiang

The purpose of this paper is to investigate the optimal average drag coefficient of the Ahmed body for mixed platoon driving under crosswind and no crosswind conditions using the…

Abstract

Purpose

The purpose of this paper is to investigate the optimal average drag coefficient of the Ahmed body for mixed platoon driving under crosswind and no crosswind conditions using the response surface optimization method. This study has extraordinary implications for the planning of future intelligent transportation.

Design/methodology/approach

First, the single vehicle and vehicle platoon models are validated. Second, the configuration with the lowest average drag coefficient under the two conditions is obtained by response surface optimization. At the same time, the aerodynamic characteristics of the mixed platoon driving under different conditions are also analyzed.

Findings

The configuration with the lowest average drag coefficient under no crosswind conditions is 0.3 L for longitudinal spacing and 0.8 W for lateral spacing, with an average drag coefficient of 0.1931. The configuration with the lowest average drag coefficient under crosswind conditions is 10° for yaw angle, 0.25 L for longitudinal spacing, and 0.8 W for lateral spacing, with an average drag coefficient of 0.2251. Compared to the single vehicle, the average drag coefficients for the two conditions are reduced by 25.1% and 41.3%, respectively.

Originality/value

This paper investigates the lowest average drag coefficient for mixed platoon driving under no crosswind and crosswind conditions using a response surface optimization method. The computational fluid dynamics (CFD) results of single vehicle and vehicle platoon are compared and verified with the experimental results to ensure the reliability of this study. The research results provide theoretical reference and guidance for the planning of intelligent transportation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 August 2023

Mohammadsadegh Pahlavanzadeh, Krzysztof Rusin and Wlodzimierz Wróblewski

The purpose of this study is an assessment of the existing roughness models to simulate the flow in the narrow gap between corotating and rough disks. A specific configuration of…

Abstract

Purpose

The purpose of this study is an assessment of the existing roughness models to simulate the flow in the narrow gap between corotating and rough disks. A specific configuration of the flow through the gap, which forms a minichannel with variable cross sections and rotating walls, makes it a complex problem and, therefore, worth discussing in more detail.

Design/methodology/approach

Two roughness models were examined, the first one was based on the wall function modification by application of the shift in the dimensionless velocity profile, and the second one was based on the correction of turbulence parameters at the wall, proposed by Aupoix. Due to the lack of data to validate that specific case, the approach to deal with was selected after a systematic study of reported test cases. It started with a zero-pressure-gradient boundary layer in the flow over a flat plate, continued with flow through minichannels with stationary walls, and finally, focused on the flow between corotating discs, pertaining each time to smooth and rough surfaces.

Findings

The limitations of the roughness models were highlighted, which make the models not reliable in the application to minichannel flows. It concerns turbulence models, near-wall discretization and roughness approaches. Aupoix’s method to account for roughness was selected, and the influence of minichannel height, mass flow rate, fluid properties and roughness height on the velocity profile between corotating discs in both smooth and rough cases was discussed.

Originality/value

The originality of this study is the evaluation and validation of different methods to account for the roughness in rotating mini channels, where the protrusions can cover a substantial part of the channel. Flow behavior and performance of different turbulence models were analyzed as well.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 August 2023

Zhiqi Liu, Tanghong Liu, Hongrui Gao, Houyu Gu, Yutao Xia and Bin Xu

Constructing porous wind barriers is one of the most effective approaches to increase the running safety of trains on viaducts in crosswinds. This paper aims to further improve…

Abstract

Purpose

Constructing porous wind barriers is one of the most effective approaches to increase the running safety of trains on viaducts in crosswinds. This paper aims to further improve the wind-sheltering performance of the porous wind barriers.

Design/methodology/approach

Improved delayed detached eddy simulations based on the k-ω turbulence model were carried out, and the results were validated with wind tunnel tests. The effects of the hole diameter on the flow characteristics and wind-sheltering performance were studied by comparing the wind barriers with the porosity of 21.6% and the hole diameters of 60 mm–360 mm. The flow characteristics above the windward and leeward tracks were analyzed, and the wind-sheltering performance of the wind barriers was assessed using the wind speed reduction coefficients.

Findings

The hole diameters affected the jet behind the wind barriers and the recirculation region above the tracks. Below the top of the wind barriers, the time-averaged velocity first decreased and then increased with the increase in the hole diameter. The wind barrier with the hole diameter of 120 mm had the best wind-sheltering performance for the windward track, but such barrier might lead to overprotection on the leeward track. The wind-sheltering performance of the wind barriers with the hole diameters of 240 mm and 360 mm was significantly degraded, especially above the windward track.

Originality/value

The effects of the hole diameters on the wake and wind-sheltering performance of the wind barriers were studied, by which the theoretical basis is provided for a better design of the porous wind barrier.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2023

Kaikai Shi, Hanan Lu, Xizhen Song, Tianyu Pan, Zhe Yang, Jian Zhang and Qiushi Li

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn…

Abstract

Purpose

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn impacting the potential fuel burn reduction of the aircraft. Usually, in the preliminary design stage of a BLI propulsion system, it is essential to assess the impact of fuselage boundary layer fluids on fan aerodynamic performances under various flight conditions. However, the hub region flow loss is one of the major loss sources in a fan and would greatly influence the fan performances. Moreover, the inflow distortion also results in a complex and highly nonlinear mapping relation between loss and local physical parameters. It will diminish the prediction accuracy of the commonly used low-fidelity computational approaches which often incorporate traditional physics-based loss models, reducing the reliability of these approaches in evaluating fan performances. Meanwhile, the high-fidelity full-annulus unsteady Reynolds-averaged Navier–Stokes (URANS) approach, even though it can give rather accurate loss predictions, is extremely time-consuming. This study aims to develop a fast and accurate hub loss prediction method for a BLI fan under distorted inflow conditions.

Design/methodology/approach

This paper develops a data-driven hub loss prediction method for a BLI fan under distorted inflows. To improve the prediction accuracy and applicability, physical understandings of hub flow features are integrated into the modeling process. Then, the key physical parameters related to flow loss are screened by conducting a sensitivity analysis of influencing parameters. Next, a quasi-steady assumption of flow is made to generate a training sample database, reducing the computational time by acquiring one single sample from the highly time-consuming full-annulus URANS approach to a cost-efficient single-blade-passage approach. Finally, a radial basis function neural network is used to establish a surrogate model that correlates the input parameters and the output loss.

Findings

The data-driven hub loss model shows higher prediction accuracy than the traditional physics-based loss models. It can accurately capture the circumferentially and radially nonuniform variation trends of the losses and the associated absolute magnitudes in a BLI fan under different blade load, inlet distortion intensity and rotating speed conditions. Compared with the high-fidelity full-annulus URANS results, the averaged relative prediction errors of the data-driven hub loss model are kept less than 10%.

Originality/value

The originality of this paper lies in developing a new method for predicting flow loss in a BLI fan rotor blade hub region. This method offers higher prediction accuracy than the traditional loss models and lower computational time cost than the full-annulus URANS approach, which could realize fast evaluations of fan aerodynamic performances and provide technical support for designing high-performance BLI fans.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 August 2023

Lucilla Coelho de Almeida, Joao Americo Aguirre Oliveira Junior and Jian Su

This paper aims to present a novel approach for computing particle temperatures in simulations coupling computational fluid dynamics (CFD) and discrete element method (DEM) to…

Abstract

Purpose

This paper aims to present a novel approach for computing particle temperatures in simulations coupling computational fluid dynamics (CFD) and discrete element method (DEM) to predict flow and heat transfer in fluidized beds of thermally thick spherical particles.

Design/methodology/approach

An improved lumped formulation based on Hermite-type approximations for integrals to relate surface temperature to average temperature and surface heat flux is used to overcome the limitations of classical lumped models. The model is validated through comparisons with analytical solutions for a convectively cooled sphere and experimental data for a fixed particle bed. The coupled CFD-DEM model is then applied to simulate a Geldart D bubbling fluidized bed, comparing the results to those obtained using the classical lumped model.

Findings

The validation cases demonstrate that ignoring internal thermal resistance can significantly impact the temperature in cases where the Biot number is greater than 0.1. The results for the fixed bed case clearly demonstrate that the proposed method yields significantly improved outcomes compared to the classical model. The fluidized bed results show that surface temperature can deviate considerably from the average temperature, underscoring the importance of accurately accounting for surface temperature in convective heat transfer predictions and surface processes.

Originality/value

The proposed approach offers a physically more consistent simulation without imposing a significant increase in computational cost. The improved lumped formulation can be easily and inexpensively integrated into a typical DEM solver workflow to predict heat transfer for spherical particles, with important implications for various industrial applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 August 2023

Yingshuang Liu, Ran Liu, Dalei Zhang, Shaohua Xing, Xiaohui Dou, Xinwei Zhang and Zonghao He

The corrosion behaviour of titanium alloy surface when fluid with different flow rates flows through welded joints with different residual heights was explored.

Abstract

Purpose

The corrosion behaviour of titanium alloy surface when fluid with different flow rates flows through welded joints with different residual heights was explored.

Design/methodology/approach

The experiment uses a combination of array electrodes and simulation.

Findings

It is found that when the weld reinforcement exists, the corrosion tendency of both ends of the weld metal is greater than that of other parts of the welded joint due to the influence of high turbulence kinetic energy and shear stress. The presence of weld reinforcement heights makes the fluid behind it fluctuate greatly. The passivation films of both the base metal (BM) at the rear and the heat-affected zone (HAZ) are more prone to corrosion than those of the front BM and HAZ, and the passivation film is rougher.

Originality/value

The combination of test and simulation was used to explore the influence of electrochemical and hydrodynamic factors on the corrosion behaviour of titanium alloy-welded joints when welding residual height existed.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 November 2023

Arun G. Nair, Tide P.S. and Bhasi A.B.

The mixing of fuel and air plays a pivotal role in enhancing combustion in supersonic regime. Proper mixing stabilizes the flame and prevents blow-off. Blow-off is due to the…

Abstract

Purpose

The mixing of fuel and air plays a pivotal role in enhancing combustion in supersonic regime. Proper mixing stabilizes the flame and prevents blow-off. Blow-off is due to the shorter residence time of fuel and air in the combustor, as the flow is in supersonic regime. The flame is initiated in the local subsonic region created using a flameholder within the supersonic combustor. This study aims to design an effective flameholder which increases the residence time of fuel in the combustor allowing proper combustion preventing blow-off and other instabilities.

Design/methodology/approach

The geometry of the strut-based flameholder is altered in the present study to induce a streamwise motion of the fluid downstream of the strut. The streamwise motion of the fluid is initiated by the ramps and grooves of the strut geometry. The numerical simulations were carried out using ANSYS Fluent and are validated against the available experimental and numerical results of cold flow with hydrogen injection using plain strut as the flameholder. In the present study, numerical investigations are performed to analyse the effect on hydrogen injection in strut-based flameholders with ramps and converging grooves using Reynolds-averaged Navier–Stokes equation coupled with Menter’s shear stress transport k-ω turbulence model. The analysis is done to determine the effect of geometrical parameters and flow parameter on the flow structures near the base of the strut where thorough mixing takes place. The geometrical parameters under consideration include the ramp length, groove convergence angle, depth of the groove, groove compression angle and the Mach number. Two different strut configurations, namely, symmetric and asymmetric struts were also studied.

Findings

Higher turbulence and complex flow structures are visible in asymmetric strut configuration which develops better mixing of hydrogen and air compared to symmetric strut configuration. The variation in the geometric parameters develop changes in the fluid motion downstream of the strut. The fluid passing through the converging grooves gets decelerated thereby reducing the Mach number by 20% near the base of the strut compared to the straight grooved strut. The shorter ramps are found to be more effective, as the pressure variation in lateral direction is carried along the strut walls downstream of the strut increasing the streamwise motion of the fluid. The decrease in the depth of the groove increases the recirculation zone downstream of the strut. Moreover, the increase in the groove compression angle also increases the turbulence near the base of the strut where the fuel is injected. Variation in the injection port location increases the mixing performance of the combustor by 25%. The turbulence of the fuel jet stream is considerably changed by the increase in the injection velocity. However, the change in the flow field properties within the flow domain is marginal. The increase in fuel mass flow rate brings about considerable change in the flow field inducing stronger shock structures.

Originality/value

The present study identifies the optimum geometry of the strut-based flameholder with ramps and converging grooves. The reaction flow modelling may be performed on the strut geometry incorporating the design features obtained in the present study.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 October 2023

Ajay Kumar Jaiswal and Pallab Sinha Mahapatra

Maintaining the turbine blade’s temperature within the safety limit is challenging in high-pressure turbines. This paper aims to numerically present the conjugate heat transfer…

Abstract

Purpose

Maintaining the turbine blade’s temperature within the safety limit is challenging in high-pressure turbines. This paper aims to numerically present the conjugate heat transfer analysis of a novel approach to mini-channel embedded film-cooled flat plate.

Design/methodology/approach

Numerical simulations were performed at a steady state using SST kω turbulence model. Impingement and film cooling are classical approaches generally adopted for turbine blade analysis. The existing film cooling techniques were compared with the proposed design, where a mini-channel was constructed inside the solid plate. The impact of the blowing ratio (M), Biot number (Bi) and temperature ratio (TR) on overall cooling performance was also studied.

Findings

Overall cooling effectiveness was always shown to be higher for mini-channel embedded film-cooled plates. The effectiveness increases with increasing the blowing ratio from M = 0.3 to 0.7, then decreases with increasing blowing ratio (M = 1 and 1.4) due to lift-off conditions. The mini-channel embedded plate resulted in an approximately 21% increase in area-weighted average overall effectiveness at a blowing ratio of 0.7 and Bi = 1.605. The lower uniform temperature was also found for all blowing ratios at a low Biot number, where conduction heat transfer significantly impacts total cooling effectiveness.

Originality/value

To the best of the authors’ knowledge, this study presents a novel approach to improve the cooling performances of a film-cooled flat plate with better cooling uniformity by using embedded mini-channels. Despite the widespread application of microchannels and mini-channels in thermal and fluid flow analysis, the application of mini-channels for blade cooling is not explored in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

Last 6 months (20)

Content type

Article (20)
1 – 10 of 20