Search results

21 – 30 of over 45000
Article
Publication date: 1 February 2001

DAVID ARDITI, ONUR B. TOKDEMIR and KANGSUK SUH

Although line‐of‐balance (LOB) scheduling can be superior to bar charts and networks in repetitive‐unit construction, there are indications that its use is not widespread. In this…

Abstract

Although line‐of‐balance (LOB) scheduling can be superior to bar charts and networks in repetitive‐unit construction, there are indications that its use is not widespread. In this study, the major limitations of the existing LOB methodology are identified and then eliminated by developing a computer program called repetitive unit scheduling system (RUSS). An effective algorithm that facilitates the implementation of LOB scheduling is developed. A tool that handles logical and strategic limitations caused by the particular characteristics of repetitive activities is provided. A learning model is developed and incorporated into LOB calculations. The program is designed to optimize resource allocation by using multiples of the natural rhythm of activities. An optimum crew size that guarantees maximum productivity in an activity is used throughout the LOB calculations to achieve cost‐optimized schedules. Non‐linear and discrete activities are incorporated into the LOB calculations. RUSS displays the LOB diagram of every individual path in the unit network. It is believed that a system such as RUSS will make the LOB method more appealing to contractors of repetitive projects.

Details

Engineering, Construction and Architectural Management, vol. 8 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 8 March 2024

Hongri Mao and Jianbo Yuan

This study develops a model and algorithm to solve the decentralized resource-constrained multi-project scheduling problem (DRCMPSP) and provides a suitable priority rule (PR) for…

Abstract

Purpose

This study develops a model and algorithm to solve the decentralized resource-constrained multi-project scheduling problem (DRCMPSP) and provides a suitable priority rule (PR) for coordinating global resource conflicts among multiple projects.

Design/methodology/approach

This study addresses the DRCMPSP, which respects the information privacy requirements of project agents; that is, there is no single manager centrally in charge of generating multi-project scheduling. Accordingly, a three-stage model was proposed for the decentralized management of multiple projects. To solve this model, a three-stage solution approach with a repeated negotiation mechanism was proposed.

Findings

The experimental results obtained using the Multi-Project Scheduling Problem LIBrary confirm that our approach outperforms existing methods, regardless of the average utilization factor (AUF). Comparative analysis revealed that delaying activities in the lower project makespan produces a lower average project delay. Furthermore, the new PR LMS performed better in problem subsets with AUF < 1 and large-scale subsets with AUF > 1.

Originality/value

A solution approach with a repeated-negotiation mechanism suitable for the DRCMPSP and a new PR for coordinating global resource allocation are proposed.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 14 January 2014

Tarek Hegazy, Mohamed Abdel-Monem and Dina Atef Saad

This paper aims at improving progress tracking and control of repetitive projects by developing a novel framework that automates the documentation of as-built information directly…

1120

Abstract

Purpose

This paper aims at improving progress tracking and control of repetitive projects by developing a novel framework that automates the documentation of as-built information directly into the project schedule and also introduces enhanced linear scheduling formulation to support project control decisions.

Design/methodology/approach

The proposed framework uses e-mail technology to facilitate detailed tracking of daily as-built events of all parties through bidirectional communication between site and head office. It also provides a new formulation for more accurate critical path and linear scheduling computation to accurately update the project's time and cost during construction.

Findings

Using a case study of a road project, the paper proves that the proposed framework reduces as-built documentation effort and its schedule updates are more responsive to all as-built events than traditional scheduling techniques.

Research limitations/implications

The proposed method applies to linear projects (e.g. highways) and can be extended to other repetitive projects such as high-rise buildings. It can also be extended to include voice features and procedures for forensic schedule analysis.

Practical implications

The developed methodology presents a low-cost approach to document timely progress information for decision makers of massive linear projects (often associated with infrastructure) to have better control over the execution of projects, save documentation time and cost, and avoid disputes and problems.

Originality/value

This research contributes in improving construction productivity by collecting timely as-built information using affordable communication technologies. It also presents novel advancements to the existing scheduling and control techniques to suit linear projects, which are most challenging.

Details

Engineering, Construction and Architectural Management, vol. 21 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 January 2024

Xin Zou and Zhuang Rong

In repetitive projects, repetition offers more possibilities for activity scheduling at the sub-activity level. However, existing resource-constrained repetitive scheduling

Abstract

Purpose

In repetitive projects, repetition offers more possibilities for activity scheduling at the sub-activity level. However, existing resource-constrained repetitive scheduling problem (RCRSP) models assume that there is only one sequence in performing the sub-activities of each activity, resulting in an inefficient resource allocation. This paper proposes a novel repetitive scheduling model for solving RCRSP with soft logic.

Design/methodology/approach

In this paper, a constraint programming model is developed to solve the RCRSP using soft logic, aiming at the possible relationship between parallel execution, orderly execution or partial parallel and partial orderly execution of different sub activities of the same activity in repetitive projects. The proposed model integrated crew assignment strategies and allowed continuous or fragmented execution.

Findings

When solving RCRSP, it is necessary to take soft logic into account. If managers only consider the fixed logic between sub-activities, they are likely to develop a delayed schedule. The practicality and effectiveness of the model were verified by a housing project based on eight different scenarios. The results showed that the constraint programming model outperformed its equivalent mathematical model in terms of solving speed and solution quality.

Originality/value

Available studies assume a fixed logic between sub-activities of the same activity in repetitive projects. However, there is no fixed construction sequence between sub-activities for some projects, e.g. hotel renovation projects. Therefore, this paper considers the soft logic relationship between sub-activities and investigates how to make the objective optimal without violating the resource availability constraint.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 April 2015

Ashraf Elazouni, Anas Alghazi and Shokri Z. Selim

The purpose of this paper is to compare the performance of the genetic algorithm (GA), simulate annealing (SA) and shuffled frog-leaping algorithm (SFLA) in solving discrete…

Abstract

Purpose

The purpose of this paper is to compare the performance of the genetic algorithm (GA), simulate annealing (SA) and shuffled frog-leaping algorithm (SFLA) in solving discrete versus continuous-variable optimization problems of the finance-based scheduling. This involves the minimization of the project duration and consequently the time-related cost components of construction contractors including overheads, finance costs and delay penalties.

Design/methodology/approach

The meta-heuristics of the GA, SA and SFLA have been implemented to solve non-deterministic polynomial-time hard (NP-hard) finance-based scheduling problem employing the objective of minimizing the project duration. The traditional problem of generating unfeasible solutions in scheduling problems is adequately tackled in the implementations of the meta-heuristics in this paper.

Findings

The obtained results indicated that the SA outperformed the SFLA and GA in terms of the quality of solutions as well as the computational cost based on the small-size networks of 30 activities, whereas it exhibited the least total duration based on the large-size networks of 120 and 210 activities after prolonged processing time.

Research limitations/implications

From researchers’ perspective, finance-based scheduling is one of the few domain problems which can be formulated as discrete and continuous-variable optimization problems and, thus, can be used by researchers as a test bed to give more insight into the performance of new developments of meta-heuristics in solving discrete and continuous-variable optimization problems.

Practical implications

Finance-based scheduling discrete-variable optimization problem is of high relevance to the practitioners, as it allows schedulers to devise finance-feasible schedules of minimum duration. The minimization of project duration is focal for the minimization of time-related cost components of construction contractors including overheads, finance costs and delay penalties. Moreover, planning for the expedient project completion is a major time-management aspect of construction contractors towards the achievement of the objective of client satisfaction through the expedient delivery of the completed project for clients to start reaping the anticipated benefits.

Social implications

Planning for the expedient project completion is a major time-management aspect of construction contractors towards the achievement of the objective of client satisfaction.

Originality/value

SFLA represents a relatively recent meta-heuristic that proved to be promising, based on its limited number of applications in the literature. This paper is to implement SFLA to solve the discrete-variable optimization problem of the finance-based scheduling and assess its performance by comparing its results against those of the GA and SA.

Details

Journal of Financial Management of Property and Construction, vol. 20 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 25 July 2019

Yifei Ren and Zhiqiang Lu

In response to the station design and flexible resources allocation of the aircraft moving assembly line, a new problem named flexible resource investment problem based on project

Abstract

Purpose

In response to the station design and flexible resources allocation of the aircraft moving assembly line, a new problem named flexible resource investment problem based on project splitting (FRIP_PS), which minimizes total cost of resources with a given deadline are proposed in this paper.

Design/methodology/approach

First, a corresponding mathematical model considering project splitting is constructed, which needs to be simultaneously determined together with job scheduling to acquire the optimized project scheduling scheme and resource configurations. Then, an integrated nested optimization algorithm including project splitting policy and job scheduling policy is designed in this paper. In the first stage of the algorithm, a heuristic algorithm designed to get the project splitting scheme and then in the second stage a genetic algorithm with local prospective scheduling strategy is adopted to solve the flexible resource investment problem.

Findings

The heuristic algorithm of project splitting gets better project splitting results through the job shift selection strategy and meanwhile guides the algorithm of the second stage. Furthermore, the genetic algorithm solves resources allocation and job schedule through evaluation rules which can effectively solve the delayed execution of jobs because of improper allocation of flexible resources.

Originality/value

This paper represents a new extension of the resource investment problem based on aircraft moving assembly line. An effective integrated nested optimization algorithm is proposed to specify station splitting scheme, job scheduling scheme and resources allocation in the assembly lines, which is significant for practical engineering applications.

Details

Assembly Automation, vol. 39 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 16 March 2021

Xin Zou, Lihui Zhang and Qian Zhang

The purpose of this research is to develop a time-cost optimization model to schedule repetitive projects while considering limited resource availability.

Abstract

Purpose

The purpose of this research is to develop a time-cost optimization model to schedule repetitive projects while considering limited resource availability.

Design/methodology/approach

The model is based on the constraint programming (CP) framework; it integrates multiple scheduling characteristics of repetitive activities such as continuous or fragmented execution, atypical activities and coexistence of different modes in an activity. To improve project performance while avoiding inefficient hiring and firing conditions, the strategy of bidirectional acceleration is presented and implemented, which requires keeping regular changes in the execution modes between successive subactivities in the same activity.

Findings

Two case studies involving a real residential building construction project and a hotel refurbishing project are used to demonstrate the application of the proposed model based on four different scenarios. The results show that (1) the CP model has great advantages in terms of solving speed and solution quality than its equivalent mathematical model, (2) higher project performance can be obtained compared to using previously developed models and (3) the model can be easily replicated or even modified to enable multicrew implementation.

Originality/value

The original contribution of this research is presenting a novel CP-based repetitive scheduling optimization model to solve the multimode resource-constrained time-cost tradeoff problem of repetitive projects. The model has the capability of minimizing the project total cost that is composed of direct costs, indirect costs, early completion incentives and late completion penalties.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 16 November 2023

Ehsan Goudarzi, Hamid Esmaeeli, Kia Parsa and Shervin Asadzadeh

The target of this research is to develop a mathematical model which combines the Resource-Constrained Multi-Project Scheduling Problem (RCMPSP) and the Multi-Skilled…

Abstract

Purpose

The target of this research is to develop a mathematical model which combines the Resource-Constrained Multi-Project Scheduling Problem (RCMPSP) and the Multi-Skilled Resource-Constrained Project Scheduling Problem (MSRCPSP). Due to the importance of resource management, the proposed formulation comprises resource leveling considerations as well. The model aims to simultaneously optimize: (1) the total time to accomplish all projects and (2) the total deviation of resource consumptions from the uniform utilization levels.

Design/methodology/approach

The K-Means (KM) and Fuzzy C-Means (FCM) clustering methods have been separately applied to discover the clusters of activities which have the most similar resource demands. The discovered clusters are given to the scheduling process as priori knowledge. Consequently, the execution times of the activities with the most common resource requests will not overlap. The intricacy of the problem led us to incorporate the KM and FCM techniques into a meta-heuristic called the Bi-objective Symbiosis Organisms Search (BSOS) algorithm so that the real-life samples of this problem could be solved. Therefore, two clustering-based algorithms, namely, the BSOS-KM and BSOS-FCM have been developed.

Findings

Comparisons between the BSOS-KM, BSOS-FCM and the BSOS method without any clustering approach show that the clustering techniques could enhance the optimization process. Another hybrid clustering-based methodology called the NSGA-II-SPE has been added to the comparisons to evaluate the developed resource leveling framework.

Practical implications

The practical importance of the model and the clustering-based algorithms have been demonstrated in planning several construction projects, where multiple water supply systems are concurrently constructed.

Originality/value

Reviewing the literature revealed that there was a need for a hybrid formulation that embraces the characteristics of the RCMPSP and MSRCPSP with resource leveling considerations. Moreover, the application of clustering algorithms as resource leveling techniques was not studied sufficiently in the literature.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 3 August 2021

Tarek Salama, Ahmad Salah and Osama Moselhi

The purpose of this paper is to present a new method for project tracking and control of integrated offsite and onsite activities in modular construction considering practical…

Abstract

Purpose

The purpose of this paper is to present a new method for project tracking and control of integrated offsite and onsite activities in modular construction considering practical characteristics associated with this type of construction.

Design/methodology/approach

The design embraces building information modelling and integrates last planner system (LPS), linear scheduling method (LSM) and critical chain project management (CCPM) to develop tracking and control procedures for modular construction projects. The developed method accounts for constraints of resources continuity and uncertainties associated with activity duration. Features of proposed method are illustrated in a case example for tracking and control of modular projects.

Findings

Comparison between developed schedule and Monte Carlo simulation showed that baseline duration generated from simulation exceeds that produced by developed method by 12% and 10% for schedules with 50% and 90% confidence level, respectively. These percentages decrease based on interventions of members of project team in the LPS sessions. The case example results indicate that project is delayed 5% and experienced cost overrun of 2.5%.

Originality/value

Developed method integrated LPS, LSM and CCPM while using metrics for reliability assessment of linear schedules, namely, critical percent plan complete (PPCcr) and buffer index (BI). PPCcr and BI measure percentage of plan completion for critical activities and buffer consumption, respectively. The developed method provides a systematic procedure for forecasting look-ahead schedules using forecasting correction factor Δt and a newly developed tracking and control procedure that uses PPCcr and BI. Quantitative cost analysis is also provided to forecast and monitor project costs to prove the robustness of proposed framework.

Details

Construction Innovation , vol. 21 no. 4
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 10 May 2019

Tarek Salama and Osama Moselhi

The purpose of this paper is to present a newly developed multi-objective optimization method for the time, cost and work interruptions for repetitive scheduling while considering…

Abstract

Purpose

The purpose of this paper is to present a newly developed multi-objective optimization method for the time, cost and work interruptions for repetitive scheduling while considering uncertainties associated with different input parameters.

Design/methodology/approach

The design of the developed method is based on integrating six modules: uncertainty and defuzzification module using fuzzy set theory, schedule calculations module using the integration of linear scheduling method (LSM) and critical chain project management (CCPM), cost calculations module that considers direct and indirect costs, delay penalty, and work interruptions cost, multi-objective optimization module using Evolver © 7.5.2 as a genetic algorithm (GA) software, module for identifying multiple critical sequences and schedule buffers, and reporting module.

Findings

For duration optimization that utilizes fuzzy inputs without interruptions or adding buffers, duration and cost generated by the developed method are found to be 90 and 99 percent of those reported in the literature, respectively. For cost optimization that utilizes fuzzy inputs without interruptions, project duration generated by the developed method is found to be 93 percent of that reported in the literature after adding buffers. The developed method accelerates the generation of optimum schedules.

Originality/value

Unlike methods reported in the literature, the proposed method is the first multi-objective optimization method that integrates LSM and the CCPM. This method considers uncertainties of productivity rates, quantities and availability of resources while utilizing multi-objective GA function to minimize project duration, cost and work interruptions simultaneously. Schedule buffers are assigned whether optimized schedule allows for interruptions or not. This method considers delay and work interruption penalties, and bonus payments.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

21 – 30 of over 45000