Search results

1 – 10 of 32
Article
Publication date: 29 August 2019

Nooshin Hakamipour

The purpose of this paper is to consider the general k level step-stress accelerated life test with the Rayleigh lifetime distribution for units subjected to stress under…

Abstract

Purpose

The purpose of this paper is to consider the general k level step-stress accelerated life test with the Rayleigh lifetime distribution for units subjected to stress under progressive Type-I censoring.

Design/methodology/approach

The parameter of this distribution is assumed to be a log-linear function of the stress, and a tampered failure rate model holds. The progressive Type-I censoring reduces the cost of testing. Due to constrained resources in practice, the test design must be optimized carefully. A numerical study is conducted to illustrate the optimum test design based on several four optimality criteria under the constraint that the total experimental cost does not exceed a pre-specified budget.

Findings

This paper compares unconstrained and constrained optimal k level step-stress test. Based on the results of the simulation study, the cost constraint reduces cost and time of the test and it also, in the most cases, increases the efficiency of the test. Also, the T-optimal design is lowest cost and time for testing and it is found more optimal in both conditions.

Originality/value

In this paper, various optimization criteria for selecting the stress durations have been used, and these criteria are compared together. Also, because of affecting the stress durations on the experimental cost, the author optimize under the constraint that the total experimental cost does not exceed a pre-specified budget. The efficiency of the unconstrained test in comparison with constrained test is discussed.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 9 October 2020

Nooshin Hakamipour

In this paper, the author proposed an optimization design for a step-stress accelerated life test (SSALT) with two stress variables for the generalized exponential (GE…

Abstract

Purpose

In this paper, the author proposed an optimization design for a step-stress accelerated life test (SSALT) with two stress variables for the generalized exponential (GE) distribution under progressive type-I censoring.

Design/methodology/approach

In this paper, two stress variables were considered. Progressive censoring and accelerated life testing were used to reduce the time and cost of testing. It was assumed that the lifetimes of the test units followed a GE distribution. The effects of changing stress were considered as a cumulative exposure model. A log-linear relationship between the scale parameter of the GE distribution and the stress was proposed. The maximum likelihood estimators and approximate and bootstrap confidence intervals (CIs) for the model parameters were obtained. An optimum test plan was developed using minimization of the asymptotic variance (AV) of the percentile life under the usual operating condition.

Findings

According to the simulation results, the bootstrap CIs of the model parameters gave more accurate results than approximate CIs through the length of CIs. The sensitivity analysis was performed to illustrate the effect of initial estimates on optimal values that has been studied. Simulation results also indicated that the optimal times were not too sensitive to the initial values of parameters; thus, the proposed design was robust.

Originality/value

In most studies, only one accelerating stress variable is used. Sometimes accelerating one stress variable does not yield enough failure data. Thus, two stress variables may be needed for additional acceleration. In this paper, two stress variables are considered. The inclusion of two stress variables in a test design will lead to a better understanding of the effect of two simultaneously operating stress variables. Also, the author assumes that the failure time of the test units follows a GE distribution. It is observed that the GE distribution can be used quite effectively to analyze lifetime data in place of gamma, Weibull and log-normal distributions. Also, most studies in this field have focused on the derivation of optimum test plans. In this paper, the author examined the estimation of model parameters and the optimization of the test design. In this paper, the asymptotic and bootstrap CIs for the model parameters are calculated. In addition, a sensitivity analysis is performed to examine the effect of the changes in the pre-estimated parameters on the optimal hold times. For determining the optimal test plan, due to nonlinearity and complexity of the objective function, the particle swarm optimization (PSO) algorithm is developed to calculate the optimal hold times. In this method, the research speed is very fast and optimization ability is more.

Details

International Journal of Quality & Reliability Management, vol. 38 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 20 January 2023

Sakshi Soni, Ashish Kumar Shukla and Kapil Kumar

This article aims to develop procedures for estimation and prediction in case of Type-I hybrid censored samples drawn from a two-parameter generalized half-logistic distribution…

Abstract

Purpose

This article aims to develop procedures for estimation and prediction in case of Type-I hybrid censored samples drawn from a two-parameter generalized half-logistic distribution (GHLD).

Design/methodology/approach

The GHLD is a versatile model which is useful in lifetime modelling. Also, hybrid censoring is a time and cost-effective censoring scheme which is widely used in the literature. The authors derive the maximum likelihood estimates, the maximum product of spacing estimates and Bayes estimates with squared error loss function for the unknown parameters, reliability function and stress-strength reliability. The Bayesian estimation is performed under an informative prior set-up using the “importance sampling technique”. Afterwards, we discuss the Bayesian prediction problem under one and two-sample frameworks and obtain the predictive estimates and intervals with corresponding average interval lengths. Applications of the developed theory are illustrated with the help of two real data sets.

Findings

The performances of these estimates and prediction methods are examined under Type-I hybrid censoring scheme with different combinations of sample sizes and time points using Monte Carlo simulation techniques. The simulation results show that the developed estimates are quite satisfactory. Bayes estimates and predictive intervals estimate the reliability characteristics efficiently.

Originality/value

The proposed methodology may be used to estimate future observations when the available data are Type-I hybrid censored. This study would help in estimating and predicting the mission time as well as stress-strength reliability when the data are censored.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 13 December 2022

Jimut Bahan Chakrabarty, Soumya Roy and Shovan Chowdhury

In order to reduce avoidably lengthy duration required to test highly reliable products under usage stress, accelerated life test sampling plans (ALTSPs) are employed. This paper…

Abstract

Purpose

In order to reduce avoidably lengthy duration required to test highly reliable products under usage stress, accelerated life test sampling plans (ALTSPs) are employed. This paper aims to build a decision model for obtaining optimal sampling plan under accelerated life test setting using Type-I hybrid censoring scheme for products covered under warranty.

Design/methodology/approach

The primary decision model proposed in this paper determines ALTSP by minimizing the relevant costs involved. To arrive at the decision model, the Fisher information matrix for Type-I hybrid censoring scheme under accelerated life test setting is derived. The optimal solution is attained by utilizing appropriate techniques following a nonlinear constrained optimization approach. As a special case, ALTSP for Type-I censoring is obtained using the same approach. ALTSP under Type-I hybrid censoring using the variance minimization approach is also derived.

Findings

On comparing the optimal results obtained using the above mentioned approaches, it is found that the cost minimization approach does better in reducing the total cost incurred. Results also show that the proposed ALTSP model under cost function setting has considerably lower expected testing time. Interesting findings from the sensitivity analysis conducted using a newly introduced failure dataset pertaining to locomotive controls are highlighted.

Originality/value

The research introduces a model to design optimum ALTSP for Type-I hybrid censoring scheme. The practical viability of the model makes it valuable for real-life situations. The practical application of the proposed model is exemplified using a real-life case.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 16 January 2023

Intekhab Alam, Ahteshamul Haq, Lalit Kumar Sharma, Sumit Sharma and Ritika

In this paper, the authors design accelerated life test and provide its application in the field of accelerated life test. The authors use maximum likelihood estimation method as…

71

Abstract

Purpose

In this paper, the authors design accelerated life test and provide its application in the field of accelerated life test. The authors use maximum likelihood estimation method as a parameter estimation method.

Design/methodology/approach

In this paper we design accelerated life test and provide its application in the field of accelerated life test. The authors use maximum likelihood estimation method as a parameter estimation method.

Findings

In this study, the authors design accelerated life test under Type-I censoring when the lifetime of test items follows PID and also provides its application in the field of warranty policy. The following conclusion is made on the basis of this study. (1) An inverse relationship is shown between the shape parameter with the expected total cost and expected cycle time, while the shape parameter directly relates to the expected cost rate (see Table 5). (2) A direct relationship is shown between the scale parameter with the expected total cost and expected time cycle, while the inverse relationship is shown with the expected cost rate (see Table 5). (3) An inverse relationship is shown between the replacement age and the expected cost rate, while there are direct relationships between expected total cost and expected time cycle (see Table 5).

Originality/value

This paper is neither published or neither accepted anywhere.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 9 March 2015

Preeti Wanti Srivastava and Deepmala Sharma

Acceptance sampling plans are designed to decide about acceptance or rejection of a lot of products on the basis of sample drawn from it. Accelerating the life test helps in…

Abstract

Purpose

Acceptance sampling plans are designed to decide about acceptance or rejection of a lot of products on the basis of sample drawn from it. Accelerating the life test helps in obtaining information about the lifetimes of high reliability products quickly. The purpose of this paper is to formulate an optimum time censored acceptance sampling plan based on ramp-stress accelerated life test (ALT) for items having log-logistic life distribution. The log-logistic life distribution has been found appropriate for highly reliable components such as power system components and insulating materials.

Design/methodology/approach

The inverse power relationship has been used to model stress-life relationship. It is meant for analyzing data for which the accelerated stress is nonthermal in nature, and frequently used as an accelerating stress for products such as capacitors, transformers, and insulators. The method of maximum likelihood is used for estimating design parameters. The optimal test plan is obtained by minimizing variance of test-statistic that decides on acceptability or rejectibility of lot. The optimal test plan finds optimal sample size, stress rates, sample proportion allocated to each stress and lot acceptability constant such that producer’s risk and consumer’s risk is satisfied.

Findings

Asymptotic variance plays a pivotal role in determining the sample size required for a sampling plan for deciding the acceptance/rejection of a lot. The sample size is minimized by optimally designing a ramp-stress ALT so that the asymptotic variance is minimized.

Originality/value

The model suggested is of use to quality control and reliability engineers dealing with highly reliable items.

Details

Journal of Quality in Maintenance Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 1 October 2006

Sang Wook Chung, Young Sung Seo and Won Young Yun

The paper aims to present acceptance sampling plans based on failure‐censored step‐stress accelerated life tests for items having Weibull lives.

1009

Abstract

Purpose

The paper aims to present acceptance sampling plans based on failure‐censored step‐stress accelerated life tests for items having Weibull lives.

Design/methodology/approach

The model parameters are estimated by the method of maximum likelihood. Based on asymptotic distribution theory, the sample size and the acceptability constant are determined satisfying the producer's and consumer's risks. The step‐stress accelerated life test is optimized to have a minimum sample size by minimizing the asymptotic variance of test statistic. Two modes of step‐stress accelerated life test are considered, and a comparison between them is made. The proposed sampling plans are compared with the sampling plans based on constant stress accelerated life tests.

Findings

Asymptotic variance is a dominating factor in determining the sample size required for a sampling plan to determine the acceptability of a lot. The sample size is minimized by optimally designing a step‐stress accelerated life test so that the asymptotic variance is minimized.

Originality/value

The sampling plans presented in this paper are particularly useful when items to be tested are so reliable and are useful to reliability engineers and life test planners.

Details

Journal of Quality in Maintenance Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 1 June 2021

Srikant Gupta, Sachin Chaudhary, Prasenjit Chatterjee and Morteza Yazdani

Logistics is the part of the supply chain (SC) that plans, executes and handles forward and reverse movement and storage of products, services and related information, in order to…

Abstract

Purpose

Logistics is the part of the supply chain (SC) that plans, executes and handles forward and reverse movement and storage of products, services and related information, in order to respond to customers' needs effectively and efficiently. The main concern for logistics is to ensure that the correct product is placed at the right time. This paper introduces a linear model of shipping focused on decision-making, which includes configuration of shipping network, choosing of transport means and transfer of individual customer shipments through a particular transport system.

Design/methodology/approach

In this study, authors try to address the problem of supply chain network (SCN) where the primary goal is to determine the appropriate order allocation of products from different sources to different destinations. They also seek to minimize total transportation cost and inventory cost by simultaneously determining optimal locations, flows and shipment composition. The formulated problem of getting optimal allocation turns out to be a problem of multi-objective programming, and it is solved by using the max-addition fuzzy goal programming approach, for obtaining optimal order allocation of products. Furthermore, the problem demand and supply parameters have been considered random in nature, and the maximum likelihood estimation approach has been used to assess the unknown probabilistic distribution parameters with a specified probability level (SPL).

Findings

A case study has also been applied for examining the effectiveness and applicability of the developed multi-objective model and the proposed solution methods. Results of this study are very relevant for the manufacturing sector in particular, for those facing logistics issues in SCN. It enables researchers and managers to cope with various types of uncertainty and logistics risks associated with SCN.

Research limitations/implications

The principal contribution of the proposed model is the improved modelling of transportation and inventory, which are affected by different characteristics of SCN. To demonstrate computational information of the suggested methods and proposed model, a case illustration of SCN is provided. Also, environmentalism is increasingly becoming a significant global concern. Hence, the concept proposed could be extended to include environmental aspects as an objective function or constraint.

Originality/value

Efficient integration of logistical cost components, such as transportation costs, inventory costs, with mathematical programming models is an important open issue in logistics optimization. This study expands conventional facility location models to incorporate a range of logistic system elements such as transportation cost and different types of inventory cost, in a multi-product, multi-site network. The research is original and is focused on case studies of real life.

Article
Publication date: 24 August 2021

Soumya Roy, Biswabrata Pradhan and Annesha Purakayastha

This article considers Inverse Gaussian distribution as the basic lifetime model for the test units. The unknown model parameters are estimated using the method of moments, the…

Abstract

Purpose

This article considers Inverse Gaussian distribution as the basic lifetime model for the test units. The unknown model parameters are estimated using the method of moments, the method of maximum likelihood and Bayesian methods. As part of maximum likelihood analysis, this article employs an expectation-maximization algorithm to simplify numerical computation. Subsequently, Bayesian estimates are obtained using the Metropolis–Hastings algorithm. This article then presents the design of optimal censoring schemes using a design criterion that deals with the precision of a particular system lifetime quantile. The optimal censoring schemes are obtained after taking into account budget constraints.

Design/methodology/approach

This article first presents classical and Bayesian statistical inference for Progressive Type-I Interval censored data. Subsequently, this article considers the design of optimal Progressive Type-I Interval censoring schemes after incorporating budget constraints.

Findings

A real dataset is analyzed to demonstrate the methods developed in this article. The adequacy of the lifetime model is ensured using a simulation-based goodness-of-fit test. Furthermore, the performance of various estimators is studied using a detailed simulation experiment. It is observed that the maximum likelihood estimator relatively outperforms the method of moment estimator. Furthermore, the posterior median fares better among Bayesian estimators even in the absence of any subjective information. Furthermore, it is observed that the budget constraints have real implications on the optimal design of censoring schemes.

Originality/value

The proposed methodology may be used for analyzing any Progressive Type-I Interval Censored data for any lifetime model. The methodology adopted to obtain the optimal censoring schemes may be particularly useful for reliability engineers in real-life applications.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 11 September 2023

Mohd Irfan and Anup Kumar Sharma

A progressive hybrid censoring scheme (PHCS) becomes impractical for ensuring dependable outcomes when there is a low likelihood of encountering a small number of failures prior…

Abstract

Purpose

A progressive hybrid censoring scheme (PHCS) becomes impractical for ensuring dependable outcomes when there is a low likelihood of encountering a small number of failures prior to the predetermined terminal time T. The generalized progressive hybrid censoring scheme (GPHCS) efficiently addresses to overcome the limitation of the PHCS.

Design/methodology/approach

In this article, estimation of model parameter, survival and hazard rate of the Unit-Lindley distribution (ULD), when sample comes from the GPHCS, have been taken into account. The maximum likelihood estimator has been derived using Newton–Raphson iterative procedures. Approximate confidence intervals of the model parameter and their arbitrary functions are established by the Fisher information matrix. Bayesian estimation procedures have been derived using Metropolis–Hastings algorithm under squared error loss function. Convergence of Markov chain Monte Carlo (MCMC) samples has been examined. Various optimality criteria have been considered. An extensive Monte Carlo simulation analysis has been shown to compare and validating of the proposed estimation techniques.

Findings

The Bayesian MCMC approach to estimate the model parameters and reliability characteristics of the generalized progressive hybrid censored data of ULD is recommended. The authors anticipate that health data analysts and reliability professionals will get benefit from the findings and approaches presented in this study.

Originality/value

The ULD has a broad range of practical utility, making it a problem to estimate the model parameters as well as reliability characteristics and the significance of the GPHCS also encourage the authors to consider the present estimation problem because it has not previously been discussed in the literature.

1 – 10 of 32