Search results

1 – 10 of over 2000
Article
Publication date: 24 November 2023

Vikas Ghute and Mahesh Deshpande

The paper aims to identify the effect of ignorance of correlatedness among process observations and to implement new sampling schemes; skip and mixed sampling, in order to reduce…

Abstract

Purpose

The paper aims to identify the effect of ignorance of correlatedness among process observations and to implement new sampling schemes; skip and mixed sampling, in order to reduce the effect of autocorrelation on process capability index (PCI) Cpm.

Design/methodology/approach

Autocorrelated observations are generated using autoregressive process of order two (AR (2)) using Monte Carlo simulations. The PCI is computed based on these observations assuming the independence. The skip and mixed sampling schemes are then used to form sub-groups among correlated observations. The PCI obtained using sub-groups from skip and mixed sampling schemes are assessed using sample mean and sample standard deviation.

Findings

The paper provides empirical insights into how the effect of autocorrelation decreases in the estimated value of PCI Cpm. The use of new sampling schemes, skip and mixed sampling, reduces the effect of autocorrelation on estimates of PCI Cpm.

Originality/value

This paper fulfills an identified need to study how to reduce the effect of autocorrelation on PCI Cpm.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 28 March 2024

Nikesh Nayak, Pushpesh Pant, Sarada Prasad Sarmah and Raj Tulshan

Logistics sector is recognized as one of the core enablers of the economic development of a nation. However, inefficiency in logistics operations impedes the achievement of…

Abstract

Purpose

Logistics sector is recognized as one of the core enablers of the economic development of a nation. However, inefficiency in logistics operations impedes the achievement of intended targets by increasing the cost of doing business. Also, it is difficult to improve the efficiency of a country’s logistics operations without a metric for evaluating and understanding logistics capabilities and efficiency. Therefore, the present study has developed In-country Logistics Performance Index (ILP Index) to propose a benchmarking tool to measure the in-country logistics competitiveness, particularly in the setting of emerging economies, i.e. India.

Design/methodology/approach

This study has developed a unified index using principal component analysis and quintile approach. In addition, the proposed index relies on several dimensions that are developed and illustrated using quantitative secondary panel data.

Findings

The findings of this study reveal that the quality of infrastructure, economy, and telecommunications are the three most important dimensions that may significantly support the growth of the transportation and logistics sector. The results reveal that Gujarat, Tamil Nadu, and Maharashtra are the top performers whereas, Bihar, Jharkhand, and Jammu and Kashmir scores the least due to the insufficient logistics infrastructure as compared to other Indian states.

Originality/value

Given the extensive focus on international-level logistics index (like World Bank’s LPI) in the existing literature, this study intends to develop in-country logistics index to evaluate the logistics capabilities at the regional and state level. In addition, unlike prior studies, this study utilizes quantitative secondary data to eliminate cognitive and opinion bias. Moreover, this benchmarking tool would assist decision-makers in idealizing standard practices toward sustainable logistics operations. Additionally, the ILP index could serve the international investors in crucial decision-making, as it provides valuable insights into a country’s logistics readiness, influencing their investment choices and trade preferences. Finally, the proposed approach is adaptable to measuring the overall performance of any other industry/economy.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Book part
Publication date: 4 April 2024

Ramin Rostamkhani and Thurasamy Ramayah

This chapter of the book aims to introduce multiobjective linear programming (MLP) as an optimum tool to find the best quality engineering techniques (QET) in the main domains of…

Abstract

This chapter of the book aims to introduce multiobjective linear programming (MLP) as an optimum tool to find the best quality engineering techniques (QET) in the main domains of supply chain management (SCM). The importance of finding the best quality techniques in SCM elements in the shortest possible time and at the least cost allows all organizations to increase the power of experts’ analysis in supply chain network (SCN) data under cost-effective conditions. In other words, this chapter aims to introduce an operations research model by presenting MLP for obtaining the best QET in the main domains of SCM. MLP is one of the most determinative tools in this chapter that can provide a competitive advantage. Under goal and system constraints, the most challenging task for decision-makers (DMs) is to decide which components to fund and at what levels. The definition of a comprehensive target value among the required goals and determining system constraints is the strength of this chapter. Therefore, this chapter can guide the readers to extract the best statistical and non-statistical techniques with the application of an operations research model through MLP in supply chain elements and shows a new innovation of the effective application of operations research approach in this field. The analytic hierarchy process (AHP) is a supplemental tool in this chapter to facilitate the relevant decision-making process.

Details

The Integrated Application of Effective Approaches in Supply Chain Networks
Type: Book
ISBN: 978-1-83549-631-2

Keywords

Article
Publication date: 19 May 2023

Panagiotis Tsarouhas and Niki Sidiropoulou

In a packaging olives manufacturing system, the drained weight of the product plays a decisive role in customer’s satisfaction as well as in financial saving for the organization…

Abstract

Purpose

In a packaging olives manufacturing system, the drained weight of the product plays a decisive role in customer’s satisfaction as well as in financial saving for the organization. The purpose of this study is to minimize the variation of the drained weight of olives in the production system to avoid the negative consequences.

Design/methodology/approach

The research develops a practical implementation step-by-step of Six Sigma define, measure, analyze, improve and control (DMAIC) in reducing the variation of the drained weight of olives.

Findings

Data analysis was used at various phases of the project to identify the root causes of rejection and rework. As a result of the necessary interventions and actions to optimize the manufacturing process, the standard deviation of drained weight was significantly reduced by 51.02%, with a 99.97% decrease in the number of parts per million defectives. Thus, the yield of the production process was improved by 8.24%. The estimated annual savings from this project were US$ 228,000 resulting from reduced rejection and rework.

Practical implications

This research may be used in packaging olives production systems as a tool for managers and engineers planning to increase productivity and efficiency while also improving product quality. The study also provided the organization with helpful actions that will be used to guide future Six Sigma operations management on the system. Thus, practical guidelines and solutions are provided.

Originality/value

In this project, for the first time, the Six Sigma methodology has been applied to solve a real-world problem in the packaging olives manufacturing system and to show that the DMAIC approach may assist to improve the efficiency of their operations and hence contribute to their quest toward continuous improvement.

Details

International Journal of Lean Six Sigma, vol. 15 no. 2
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 28 November 2023

M. Sankara Narayanan, P. Jeyadurga and S. Balamurali

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life…

Abstract

Purpose

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life for the products under the new Weibull–Pareto distribution. The economic design of the proposed plan is also considered to assure the product's lifetime with minimum cost.

Design/methodology/approach

The authors have developed an optimization model for obtaining the required plan parameters by solving simultaneously two non-linear inequalities and such inequalities have been formed based on the two points on the operating characteristic curve approach.

Findings

The results show that the average sample number, average total inspection and total inspection cost under the proposed plan are smaller than the same of a single sampling plan. This means that the proposed plan will be more efficient than a single sampling plan in reducing inspection effort and cost while providing the desired protection.

Originality/value

The proposed modified double sampling plan designed to assure the median life of the products under the new Weibull–Pareto distribution is not available in the literature. The proposed plan will be very useful in assuring the product median lifetime with minimum sample size as well as minimum cost in all the manufacturing industries.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 9 January 2024

Mahendra Saha, Pratibha Pareek, Harsh Tripathi and Anju Devi

First is to develop the time truncated median control chart for the Rayleigh distribution (RD) and generalized RD (GRD), respectively. Second is to evaluate the performance of…

Abstract

Purpose

First is to develop the time truncated median control chart for the Rayleigh distribution (RD) and generalized RD (GRD), respectively. Second is to evaluate the performance of the proposed attribute control chart which depends on the average run length (ARL) and third is to include real life examples for application purpose of the proposed attribute control chart.

Design/methodology/approach

(1) Select a random sample of size n from each subgroup from the production process and put them on a test for specified time t, where t = ? × µe. Then, count the numbers of failed items in each subgroup up to time t. (2) Step 2: Using np chart, define D = np, the number of failures, which also a random variable follows the Binomial distribution. It is better to use D = np chart rather than p chart because the authors are using number of failure rather than proportion of failure p. When the process is in control, then the parameters of the binomial distribution are n and p0, respectively. (3) Step 3: The process is said to be in control if LCL = D = UCL; otherwise, the process is said to be out of control. Hence, LCL and UCL for the proposed control chart.

Findings

From the findings, it is concluded that the GRD has smaller ARL values than the RD for specified values of parameters, which indicate that GRD performing well for out of control signal as compared to the RD.

Research limitations/implications

This developed control chart is applicable when real life situation coincide with RD and GRD.

Social implications

Researcher can directly use presented study and save consumers from accepting bad lot and also encourage producers to make good quality products so that society can take benefit from their products.

Originality/value

This article dealt with time truncated attribute median control chart for non-normal distributions, namely, the RD and GRD, respectively. The structure of the proposed control chart is developed based on median lifetime of the RD and GRD, respectively.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 22 November 2022

Md Doulotuzzaman Xames, Fariha Kabir Torsha and Ferdous Sarwar

The purpose of this paper is to predict the machining performance of electrical discharge machining of Ti-13Nb-13Zr (TNZ) alloy, a promising biomedical alloy, using artificial…

Abstract

Purpose

The purpose of this paper is to predict the machining performance of electrical discharge machining of Ti-13Nb-13Zr (TNZ) alloy, a promising biomedical alloy, using artificial neural networks (ANN) models.

Design/methodology/approach

In the research, three major performance characteristics, i.e. the material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR), were chosen for the study. The input parameters for machining were the voltage, current, pulse-on time and pulse-off time. For the ANN model, a two-layer feedforward network with sigmoid hidden neurons and linear output neurons were chosen. Levenberg–Marquardt backpropagation algorithm was used to train the neural networks.

Findings

The optimal ANN structure comprises four neurons in input layer, ten neurons in hidden layer and one neuron in the output layer (4–10-1). In predicting MRR, the 60–20-20 data split provides the lowest MSE (0.0021179) and highest R-value for training (0.99976). On the contrary, the 70–15-15 data split results in the best performance in predicting both TWR and SR. The model achieves the lowest MSE and highest R-value for training in predicting TWR as 1.17E-06 and 0.84488, respectively. Increasing the number of hidden neurons of the network further deteriorates the performance. In predicting SR, the authors find the best MSE and R-value as 0.86748 and 0.94024, respectively.

Originality/value

This is a novel approach in performance prediction of electrical discharge machining in terms of new workpiece material (TNZ alloys).

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 September 2023

Julia T. Thomas and Mahesh Kumar

The purpose of the paper is set to minimize the total cost of a manufacturing system when an acceptance sampling plan (ASP) is carried out in a fuzzy environment.

Abstract

Purpose

The purpose of the paper is set to minimize the total cost of a manufacturing system when an acceptance sampling plan (ASP) is carried out in a fuzzy environment.

Design/methodology/approach

A fuzzy acceptance sampling plan (FASP) is employed for the inspection of the batch of products and a fuzzy cost optimization problem is formulated.

Findings

The extent of uncertainty determines an interval for the total cost function with upper and lower bounds. The effect of variation in the ambiguity of the proportion of defectives in the probability of acceptance is determined.

Practical implications

The proposed model is specifically designed for production and supply units with ASP for attributes. Still, the proportion of defectives in the inspection process is fuzzy.

Originality/value

Fuzzy probability distribution is used to model an optimal inspection plan for a general supply chain. Economic design of supply chain under fuzzy proportion of defectives is discussed for the first time.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 10 April 2024

Yanhu Han, Haoyuan Du and Chongyang Zhao

Digital transformation is crucial for achieving high-quality development in the construction industry. Assessing the industry's digital maturity is an urgent necessity. The…

Abstract

Purpose

Digital transformation is crucial for achieving high-quality development in the construction industry. Assessing the industry's digital maturity is an urgent necessity. The Digital Transformation Maturity Model is a potential tool to systematically evaluate the digital maturity levels of various industries. However, most existing models predominantly focus on sectors such as the Internet and manufacturing, leaving the construction industry comparatively underrepresented. This study aims to address this gap by developing a maturity model tailored specifically for digital transformation within the construction industry.

Design/methodology/approach

This study leverages the Capability Maturity Theory and integrates the unique characteristics of the construction industry to construct a comprehensive maturity model for digital transformation. The model comprises five critical dimensions: industry environment, strategy and organization, digital infrastructure, business process and management digitization, and digital performance. These dimensions encompass a total of 25 assessment indexes. To validate the model's feasibility and effectiveness, a digital transformation maturity assessment was conducted within China's construction industry.

Findings

The results of the maturity assessment within the Chinese construction industry reveal that it currently operates at the third level of digital maturity (defined level). The industry's maturity score stands at 2.329 out of 5. This outcome indicates that the developed model is accurate and reliable in assessing the level of digital transformation maturity within the construction industry.

Originality/value

This paper contributes both practical and theoretical insights to the field of digital transformation within the construction industry. By creating a tailored maturity model, it addresses a significant gap in existing research and offers a valuable tool for assessing and advancing digital maturity levels within this industry.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 14 February 2024

Batuhan Kocaoglu and Mehmet Kirmizi

This study aims to develop a modular and prescriptive digital transformation maturity model whose constituent elements have conceptual integrity as well as reveal the priority…

Abstract

Purpose

This study aims to develop a modular and prescriptive digital transformation maturity model whose constituent elements have conceptual integrity as well as reveal the priority weights of maturity model components.

Design/methodology/approach

A literature review with a concept-centric analysis enlightens the characteristics of constituent parts and reveals the gaps for each component. Therefore, the interdependency network among model dimensions and priority weights are identified using decision-making trial and evaluation laboratory (DEMATEL)-based analytic network process (ANP) method, including 19 industrial experts, and the results are robustly validated with three different analyses. Finally, the applicability of the developed maturity model and the constituent elements are validated in the context of the manufacturing industry with two case applications through a strict protocol.

Findings

Results obtained from DEMATEL-based ANP suggest that smart processes with a priority weight of 17.91% are the most important subdimension for reaching higher digital maturity. Customer integration and value, with a priority weight of 17.30%, is the second most important subdimension and talented employee, with 16.24%, is the third most important subdimension.

Research limitations/implications

The developed maturity model enables companies to make factual assessments with specially designed measurement instrument including incrementally evolved questions, prioritize action fields and investment strategies according to maturity index calculations and adapt to the dynamic change in the environment with spiral maturity level identification.

Originality/value

A novel spiral maturity level identification is proposed with conceptual consistency for evolutionary progress to adapt to dynamic change. A measurement instrument that is incrementally structured with 234 statements and a measurement method that is based on the priority weights and leads to calculating the maturity index are designed to assess digital maturity, create an improvement roadmap to reach higher maturity levels and prioritize actions and investments without any external support and assistance.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 2000