Search results

1 – 4 of 4
Article
Publication date: 17 September 2024

M. Vishal, K.S. Satyanarayanan, M. Prakash, Rakshit Srivastava and V. Thirumurugan

At this moment, there is substantial anxiety surrounding the fire safety of huge reinforced concrete (RC) constructions. The limitations enforced by test facilities, technology…

Abstract

Purpose

At this moment, there is substantial anxiety surrounding the fire safety of huge reinforced concrete (RC) constructions. The limitations enforced by test facilities, technology, and high costs have significantly limited both full-scale and scaled-down structural fire experiments. The behavior of an individual structural component can have an impact on the entire structural system when it is connected to it. This paper addresses the development and testing of a self-straining preloading setup that is used to perform thermomechanical action in RC beams and slabs.

Design/methodology/approach

Thermomechanical action is a combination of both structural loads and a high-temperature effect. Buildings undergo thermomechanical action when it is exposed to fire. RC beams and slabs are one of the predominant structural members. The conventional method of testing the beams and slabs under high temperatures will be performed by heating the specimens separately under the desired temperature, and then mechanical loading will be performed. This gives the residual strength of the beams and slabs under high temperatures. This method does not show the real-time behavior of the element under fire. In real-time, a fire occurs simultaneously when the structure is subjected to desired loads and this condition is called thermomechanical action. To satisfy this condition, a unique self-training test setup was prepared. The setup is based on the concept of a prestressing condition where the load is applied through the bolts.

Findings

To validate the test setup, two RC beams and slabs were used. The test setup was tested in service load range and a temperature of 300 °C. One of the beams and slabs was tested conventionally with four-point bending and point loading on the slab, and another beam and slab were tested using the preloading setup. The results indicate the successful operation of the developed self-strain preloading setup under thermomechanical action.

Research limitations/implications

Gaining insight into the unpredictable reaction of structural systems to fire is crucial for designing resilient structures that can withstand disasters. However, comprehending the instantaneous behavior might be a daunting undertaking as it necessitates extensive testing resources. Therefore, a thorough quantitative and qualitative numerical analysis could effectively evaluate the significance of this research.

Originality/value

The study was performed to validate the thermomechanical load setup for beams and slabs on a single-bay single-storey RC frame with and without slab under various fire possible scenarios. The thermomechanical load setup for RC members is found to be scarce.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 December 2023

T.M. Jeyashree and P.R. Kannan Rajkumar

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to…

Abstract

Purpose

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to elevated temperatures during a fire. The fire response of prestressed hollow-core slabs is required to develop slabs with greater fire endurance. The present study aims to determine the extent to which the hollow-core slab can sustain load during a fire without undergoing progressive collapse under extreme fire and heating scenarios.

Design/methodology/approach

A finite element model was generated to predict the fire response of prestressed hollow core slabs under elevated temperatures. The accuracy of the model was predicted by examining thermal and structural responses through coupled temperature displacement analysis. A sensitivity analysis was performed to study the effects of concrete properties on prediction of system response. A parametric study was conducted by varying the thickness of the slab, fire and heating scenarios.

Findings

Thermal conductivity and specific heat of concrete were determined as sensitive parameters. The thickness of the slab was identified as a critical factor at a higher load level. Asymmetric heating of the slab resulted in higher fire resistance compared with symmetric heating.

Originality/value

This is the first study focused on studying the effect of modeling uncertainties on the system response by sensitivity analysis under elevated temperatures. The developed model with a parametric study helps in identifying critical factors for design purposes.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 24 July 2023

Mehdi Ranjbar-Roeintan

The purpose of this study is to investigate the strain rate effect on the problem of low-velocity impact (LVI) on a beam, including silicon nitride and stainless steel materials.

Abstract

Purpose

The purpose of this study is to investigate the strain rate effect on the problem of low-velocity impact (LVI) on a beam, including silicon nitride and stainless steel materials.

Design/methodology/approach

Based on the nonlinear Hertz impact mechanism, the energies related to the impactor and the beam are written, and motion equations are derived using the Lagrangian mechanics and Ritz method. The strain rate term is represented as a damping matrix in the equations of motion. In the issue of LVI on the silicon nitride and stainless steel beam, the effect of internal viscous damping coefficient in simply–simply and clamped–free boundary conditions are studied. Also, the influence of the volume fraction index in the range between zero and one and greater than one on the impact response is investigated.

Findings

The results make it clear that the strain rate parameter had little effect on the response in LVI. Also, an increase in the volume fraction index has led to a decrease in the contact force and an increase in the rebound velocity of the impactor.

Originality/value

The effect of strain rate on LVI is theoretically studied in this paper, while in most of the papers, this effect is investigated experimentally and numerically.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 September 2024

Ziwang Xiao, Fengxian Zhu, Lifeng Wang, Rongkun Liu and Fei Yu

As an important load-bearing component of cable-stayed bridge, the cable-stayed cable is an important load-bearing link for the bridge superstructure and the load transferred…

Abstract

Purpose

As an important load-bearing component of cable-stayed bridge, the cable-stayed cable is an important load-bearing link for the bridge superstructure and the load transferred directly to the bridge tower. In order to better manage the risk of the cable system in the construction process, the purpose of this paper is to study a new method of dynamic risk analysis of the cable system of the suspended multi-tower cable-stayed bridge based on the Bayesian network.

Design/methodology/approach

First of all, this paper focuses on the whole process of the construction of the cable system, analyzes the construction characteristics of each process, identifies the safety risk factors in the construction process of the cable system, and determines the causal relationship between the risk factors. Secondly, the prior probability distribution of risk factors is determined by the expert investigation method, and the risk matrix method is used to evaluate the safety risk of cable failure quantitatively. The function expression of risk matrix is established by combining the probability of risk event occurrence and loss level. After that, the topology structure of Bayesian network is established, risk factors and probability parameters are incorporated into the network and then the Bayesian principle is applied to update the posterior probability of risk events according to the new information in the construction process. Finally, the construction reliability evaluation of PAIRA bridge main bridge cable system in Bangladesh is taken as an example to verify the effectiveness and accuracy of the new method.

Findings

The feasibility of using Bayesian network to dynamically assess the safety risk of PAIRA bridge in Bangladesh is verified by the construction reliability evaluation of the main bridge cable system. The research results show that the probability of the accident resulting from the insufficient safety of the cable components of the main bridge of PAIRA bridge is 0.02, which belongs to a very small range. According to the analysis of the risk grade matrix, the risk grade is Ⅱ, which belongs to the acceptable risk range. In addition, according to the reverse reasoning of the Bayesian model, when the serious failure of the cable system is certain to occur, the node with the greatest impact is B3 (cable break) and its probability of occurrence is 82%, that is, cable break is an important reason for the serious failure of the cable system. The factor that has the greatest influence on B3 node is C6 (cable quality), and its probability is 34%, that is, cable quality is not satisfied is the main reason for cable fracture. In the same way, it can be obtained that the D9 (steel wire fracture inside the cable) event of the next level is the biggest incentive of C6 event, its occurrence probability is 32% and E7 (steel strand strength is not up to standard) event is the biggest incentive of D9 event, its occurrence probability is 13%. At the same time, the sensitivity analysis also confirmed that B3, C6, D9 and E7 risk factors were the main causes of risk occurrence.

Originality/value

This paper proposes a Bayesian network-based construction reliability assessment method for cable-stayed bridge cable system. The core purpose of this method is to achieve comprehensive and accurate management and control of the risks in the construction process of the cable system, so as to improve the service life of the cable while strengthening the overall reliability of the structure. Compared with the existing evaluation methods, the proposed method has higher reliability and accuracy. This method can effectively assess the risk of the cable system in the construction process, and is innovative in the field of risk assessment of the cable system of cable-stayed bridge construction, enriching the scientific research achievements in this field, and providing strong support for the construction risk control of the cable system of cable-stayed bridge.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 4 of 4