Search results

1 – 10 of 165
Open Access
Article
Publication date: 27 February 2024

Favour Onamrewho Atubi

The purpose of the research was to, first, investigate if the use of maps as instructional resources will boost scholarly performance and, second, examine if gender can moderate…

Abstract

Purpose

The purpose of the research was to, first, investigate if the use of maps as instructional resources will boost scholarly performance and, second, examine if gender can moderate the effect of map usage on scholarly performance.

Design/methodology/approach

The study was a quasi-experimental pre-test and post-test. A sample of 260 JSS II Students from 8 schools were selected through the purposive sampling technique. A Social Studies Scholarly Performance Test (SSSPT) with a reliability index of 0.79 was the instrument for data collection. The students were assigned into two groups: control and experimental. Both groups were pre-tested taught for a timeline of six weeks and thereafter post-tested.

Findings

The study reported a significant increase in the scholarly performance of students taught with maps; a significant difference occurred in the scholarly performance of both groups and gender did not moderate the effect of maps.

Research limitations/implications

The social studies teachers used for the study did not have previous knowledge or map skills; this could have affected the outcome. Secondly, the treatment took place for just six weeks, and the time allotted for social studies in the school timetable was used. This may not have given the students enough time to master map interpretation.

Practical implications

A major implication of the study is that results will show that maps can promote the scholarly performance of students in social studies. Secondly, the fact that gender did not moderate the effect of maps suggests that maps are gender-friendly.

Social implications

The results of the study, if implemented, would make social studies teachers to become inventive and resourceful in the use of maps as instructional resources for junior secondary students' scholarly performance in social studies without taking gender into consideration.

Originality/value

This study is a product of the researcher’s doctoral thesis; therefore, it is original and has value. The results are the product of a painstaking study carried out by the author for a period of three years on the effect of instructional resources on social studies students’ scholarly performance. Maps were one of the instructional resources studied for the award of a Ph.D. degree.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 30 October 2023

Ana Carla Cordeiro, Gustavo George Verdieri Nuernberg, Lilian Cristina Côcco and Marlon Wesley Machado Cunico

Different technologies may currently be used to produce dental prostheses, such as additive manufacturing and traditional milling. This study aims to evaluate and improve the…

Abstract

Purpose

Different technologies may currently be used to produce dental prostheses, such as additive manufacturing and traditional milling. This study aims to evaluate and improve the fabrication process for hot-pressed porcelain dental prostheses and compare the use of masked stereolithography apparatus (MSLA) casting to computer-aided design/computer-aided manufacturing (CAD/CAM) casting. The cost-benefit analysis of producing dental prostheses through various technologies, including additive manufacturing and traditional milling, has not been fully explored. The cost of materials and processes used to produce prostheses varies based on complexity of design and materials used, and long-term effects, such as durability and wear and tear, must be taken into account.

Design/methodology/approach

Using key elements of part costs and estimation cost models, a multivariable approach was used to evaluate the practicality of the recommended strategy and process improvement.

Findings

The research found that MSLA casting provides a higher return on investment than CAD/CAM casting, and the optimized production process could be more suitable for the size and annual demand for prostheses.

Originality/value

Overall, this study highlights the need for a more comprehensive understanding of the cost-benefit analysis of different dental prosthesis production methods and emphasises the importance of evaluating long-term effects on the cost-benefit analysis.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 October 2023

Bahubali Babanrao Sangame and Y. Prasannatha Reddy

The foundry industry incurs additional costs as a result of defective castings. Shrinkage defects are a frequent problem in ductile iron castings. It is still essential to…

Abstract

Purpose

The foundry industry incurs additional costs as a result of defective castings. Shrinkage defects are a frequent problem in ductile iron castings. It is still essential to understand how shrinkage porosity varies in size when the ductile iron composition changes. This information can be used to produce high-quality cast parts and determine the best processing conditions. The objective of this research paper is to examine the effect of carbon equivalent and inoculation on the morphology of the shrinkage defect using thermal analysis.

Design/methodology/approach

This study focuses on certain thermal analysis parameters, such as the angle of the first derivative curve at the solidus temperature, recalescence and its relationships to graphite nucleation and shrinkage tendency. The results of thermal analysis in terms of the cooling curve and its derivative parameters, and thorough characterizations of the shrinkage observed in cup castings produced with various melt compositions and inoculation are presented in the current study.

Findings

The proportion of caved surfaces and macro shrinkage porosity defects has been reduced as the carbon equivalent of melt increases from hypoeutectic to a hypereutectic composition. The composition that is slightly hypereutectic has the lowest shrinkage propensity. Although inoculation reduces shrinkage, the importance of this parameter differs depending on the carbon equivalent.

Originality/value

The percentage of macro shrinkage porosity and the angle that the cooling rate curve forms are strongly correlated. It is found that the macro shrinkage size decreases as the angle of the first derivative curve at the solidus temperature is reduced. Further, lower macroporosity is produced by a metal that has a higher nodule count in association with a greater cooling rate toward the end of the solidification process.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 May 2024

Mingge Li, Zhongjun Yin, Xiaoming Huang, Jie Ma and Zhijie Liu

The purpose of this paper is to propose a casting process for the production of double-chamber soft fingers, which avoids the problems of air leakage and fracture caused by…

Abstract

Purpose

The purpose of this paper is to propose a casting process for the production of double-chamber soft fingers, which avoids the problems of air leakage and fracture caused by multistep casting. This proposed method facilitates the simultaneous casting of the inflation chamber and the jamming chamber.

Design/methodology/approach

An integrated molding technology based on the lost wax casting method is proposed for the manufacture of double-chamber soft fingers. The solid wax core is assembled with the mold, and then liquid silicone rubber is injected into it. After cooling and solidification, the mold is stripped off and heated in boiling water, so that the solid wax core melts and precipitates, and the integrated soft finger is obtained.

Findings

The performance and fatigue tests of the soft fingers produced by the proposed method have been carried out. The results show that the manufacturing method can significantly improve the fatigue resistance and stability of the soft fingers, while also avoiding the problems such as air leakage and cracking.

Originality/value

The improvement of the previous multistep casting method of soft fingers is proposed, and the integrated molding manufacturing method is proposed to avoid the problems caused by secondary bonding.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 21 December 2022

Bahubali Babanrao Sangame, Y. Prasannatha Reddy and Vasudev D. Shinde

The final properties of ductile iron are decided by the inoculant processing while pouring the melt. The shape and size of nodules generated during solidification are of paramount…

Abstract

Purpose

The final properties of ductile iron are decided by the inoculant processing while pouring the melt. The shape and size of nodules generated during solidification are of paramount importance in solidification of ductile cast iron. The purpose of this study is to examine the effect of different inoculant addition on the solidification of ductile cast iron melt through thermal analysis.

Design/methodology/approach

Thermal analysis has recently grown as a tool for modeling the solidification behavior of ductile cast irons. Iron properties will be predicted by analyzing the cooling curve patterns of the melts and predicting the related effectiveness of inoculant processing. In this study, thermal analysis is used to evaluate the need for inoculation.

Findings

The amount and type of inoculation will affect the amount of undercooling during the solidification of ductile cast iron. It is found that the addition of 0.1 to 0.4 Wt.% inoculant lowers the austenite dendrite formation starting temperature while increasing the eutectic freezing temperature. Microstructure analysis revealed that the addition of inoculation increases the nodule count from 103 to 242 nodules. The beneficial effects of inoculation are sustained by an improved graphitization factor, which shows the formation of graphite nodules in the second phase of the eutectic reaction.

Originality/value

The inoculation treatment has improved metallurgical occurrences such as carbide to graphite conversion, graphite microstructure control, graphite nodule count at the start of solidification and the last stage of solidification, which determines the soundness of casting. The foundry industry can follow these steps for monitoring the solidification of ductile iron castings.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 November 2022

Rajat Yadav, Anas Islam and Vijay Kumar Dwivedi

The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and…

64

Abstract

Purpose

The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and eggshell (ES) particles as reinforcement, stir casting method was used.

Design/methodology/approach

Several other aspects, including the weight percent of reinforcing agent particles, the applied stress and the sliding speed, were taken into consideration. During the course of the wear test, the sliding distance that was recorded varied from a minimum of 1,000 m all the way up to a maximum of 3,135 m (10, 15, 20, 25 and 30 min). The typical range for normal loads is 8–24 N, and their speed is 1.58 m/s.

Findings

With the AA/ES/RHA composite, the wear rates decreases when the grain size of the reinforcing particles enhanced. Scanning electron microscopy images of worn surfaces show that at low speeds, delaminating and ploughing are the main causes of wear. At high speeds, ploughing is major cause of wear. Composites with better wear-resistant properties can be used in wide range of tribological applications, especially in the automotive industry. It was found that hardness increases at the same time as the weight of the reinforcement increases. Tensile and hardness were maximized at 10% reinforcement mix in Al3105.

Originality/value

In this work, ES and RHA has been used to develop green metal matrix composite to support green revolution as promoted/suggested by United Nations thus reducing the environmental pollution.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Article
Publication date: 29 November 2023

Devendra Pratap Singh, Vijay Kumar Dwivedi and Mayank Agarwal

The purpose of this study is to investigate and evaluate the impact of varying proportions of reinforcement on the mechanical properties of a modified Al2O3-LM6 cast composite…

Abstract

Purpose

The purpose of this study is to investigate and evaluate the impact of varying proportions of reinforcement on the mechanical properties of a modified Al2O3-LM6 cast composite under self-pouring temperature conditions. This study aims to determine the optimal mixture proportion of fine powders of Al, Si and xAl2O3 (with x values of 2%, 3% and 4%) through the application of design of experiment (DoE) and statistical analysis using the Minitab software. This study also involved evaluating the microstructural estimation and other physical properties of the cast composite to understand the combined effect of the reinforcement proportion on the material’s properties.

Design/methodology/approach

The researchers initially mixed the powders through ball milling and then compacted the moisture-free powder mix in a closed steel die. The resulting preforms were heated at the self-pouring temperature in an inert environment to fabricate the final cast composite. By applying DoE and performing an analysis of variance (ANOVA), the researchers sought to optimize the mixture proportion that would yield the best mechanical properties.

Findings

The experimental results indicated that a mixture combination of 83.5% Al blended with 12.5% Si and 4% Al2O3 led to the greatest improvement in mechanical properties, specifically in terms of increased density, hardness and impact strength. The ANOVA further supported the interaction effect of each processing parameter on the observed results. The results of this study offer valuable insights for the fabrication of modified Al2O3-LM6 cast composites under self-pouring temperature conditions. The identified optimal mixture proportion provides guidance for manufacturing processes and material selection to achieve improved mechanical properties in similar applications.

Originality/value

This study focuses on a specific composite material consisting of modified Al2O3 and LM6. Although Al2O3 and LM6 have been studied individually in various contexts, the combination of these materials and their impact on mechanical properties under self-pouring temperature conditions is a novel aspect of this research. The researchers use DoE methodology, along with statistical analysis using Minitab software, to optimize the mixture proportion and analyze the data. This systematic approach allows for a comprehensive exploration of the parameter space and the identification of significant factors that influence the mechanical properties of the composite.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 March 2024

João Eduardo Sampaio Brasil, Fabio Antonio Sartori Piran, Daniel Pacheco Lacerda, Maria Isabel Wolf Morandi, Debora Oliveira da Silva and Miguel Afonso Sellitto

The purpose of this study is to evaluate the efficiency of a Brazilian steelmaking company’s reheating process of the hot rolling mill.

Abstract

Purpose

The purpose of this study is to evaluate the efficiency of a Brazilian steelmaking company’s reheating process of the hot rolling mill.

Design/methodology/approach

The research method is a quantitative modeling. The main research techniques are data envelopment analysis, TOBIT regression and simulation supported by artificial neural networks. The model’s input and output variables consist of the average billet weight, number of billets processed in a batch, gas consumption, thermal efficiency, backlog and production yield within a specific period. The analysis spans 20 months.

Findings

The key findings include an average current efficiency of 81%, identification of influential variables (average billet weight, billet count and gas consumption) and simulated analysis. Among the simulated scenarios, the most promising achieved an average efficiency of 95% through increased equipment availability and billet size.

Practical implications

Additional favorable simulated scenarios entail the utilization of higher pre-reheating temperatures for cold billets, representing a large amount of savings in gas consumption and a reduction in CO2 emissions.

Originality/value

This study’s primary innovation lies in providing steelmaking practitioners with a systematic approach to evaluating and enhancing the efficiency of reheating processes.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

502

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 165