Search results

1 – 10 of over 6000
Article
Publication date: 19 June 2023

Shuang-Gao Li, Wenmin Chu, Xiang Huang and Jinggang Xu

In the digital assembly system of large aircraft components (LAC), the docking trajectory of LAC is an important factor affecting the docking accuracy and stability of the LAC…

Abstract

Purpose

In the digital assembly system of large aircraft components (LAC), the docking trajectory of LAC is an important factor affecting the docking accuracy and stability of the LAC. The main content of docking trajectory planning is how to move the LAC from the initial posture and position to the target posture and position (TPP). This paper aims to propose a trajectory planning method of LAC based on measured data.

Design/methodology/approach

First, the posture and position error model of the wing is constructed according to the measured data of the measurement points (MPs) and the fork lug joints. Second, the particle swarm optimization algorithm based on the dynamic inertia factor is used to optimize the TPP of the wing. Third, to ensure the efficiency and stability of posture adjustment, the S-shaped curve is used as the motion trajectory of LAC, and the parameters of the trajectory are solved by the generalized multiplier method. Finally, a series of docking experiments are carried out.

Findings

During the process of posture adjustment, the motion of the numerical control locator (NCL) is stable, and the interaction force between the NCLs is always within a reasonable range. After the docking, the MPs are all within the tolerance range, and the coaxiality error of the fork lug hole is less than 0.2 mm.

Originality/value

In this paper, the measured data rather than the theoretical design model is used to solve the TPP, which improves the docking accuracy of LAC. Experiment results show that the proposed trajectory method can complete the LAC docking effectively and improve the docking accuracy.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 February 1975

Kjell‐Arne Ringbakk

Corporate planning is in trouble. My research on corporate planning practices in North American corporations shows that:

Abstract

Corporate planning is in trouble. My research on corporate planning practices in North American corporations shows that:

Details

Planning Review, vol. 3 no. 2
Type: Research Article
ISSN: 0094-064X

Book part
Publication date: 1 November 2007

Irina Farquhar and Alan Sorkin

This study proposes targeted modernization of the Department of Defense (DoD's) Joint Forces Ammunition Logistics information system by implementing the optimized innovative…

Abstract

This study proposes targeted modernization of the Department of Defense (DoD's) Joint Forces Ammunition Logistics information system by implementing the optimized innovative information technology open architecture design and integrating Radio Frequency Identification Device data technologies and real-time optimization and control mechanisms as the critical technology components of the solution. The innovative information technology, which pursues the focused logistics, will be deployed in 36 months at the estimated cost of $568 million in constant dollars. We estimate that the Systems, Applications, Products (SAP)-based enterprise integration solution that the Army currently pursues will cost another $1.5 billion through the year 2014; however, it is unlikely to deliver the intended technical capabilities.

Details

The Value of Innovation: Impact on Health, Life Quality, Safety, and Regulatory Research
Type: Book
ISBN: 978-1-84950-551-2

Article
Publication date: 21 April 2020

Wenmin Chu, Xiang Huang and Shuanggao Li

Posture adjustment plays an important role in spacecraft manufacturing. The traditional posture adjustment method, which has a large workload and is difficult to guarantee the…

Abstract

Purpose

Posture adjustment plays an important role in spacecraft manufacturing. The traditional posture adjustment method, which has a large workload and is difficult to guarantee the quality of posture adjustment, cannot meet the requirements of modern spacecraft manufacturing. This paper aims to optimize the trajectory of posture adjustment, reduce the internal force of the posture adjustment mechanism and improve the accuracy of the system.

Design/methodology/approach

First, the measuring point is measured by a laser tracker and the position and posture of the cabin is solved. Then, Newton–Euler method is used to construct the dynamic model of the posture adjustment system (PAS) without internal force. Finally, the adjustment time is optimized based on Fibonacci search method and the trajectory of the cabin is fitted by the fifth order polynomial.

Findings

The simulation results show that, compared with the other trajectory planning methods, this method can effectively avoid the internal force of posture adjustment caused by redundant driving, and the trajectory of velocity and acceleration obtained are continuous, meeting the engineering constraints.

Originality/value

In this paper, a dynamic model of PAS without internal force is constructed. The trajectory planning of posture adjustment based on this model can improve the quality of cabin assembly.

Details

Assembly Automation, vol. 40 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 17 July 2019

Miaolei He, Changji Ren, Jilin He, Kang Wu, Yuming Zhao, Zhijie Wang and Can Wu

Excellent obstacle surmounting performance is essential for the robotic vehicles in uneven terrain. However, existing robotic vehicles depend on complex mechanisms or control…

Abstract

Purpose

Excellent obstacle surmounting performance is essential for the robotic vehicles in uneven terrain. However, existing robotic vehicles depend on complex mechanisms or control algorithms to surmount an obstacle. Therefore, this paper aims to propose a new simple configuration of an all-terrain robotic vehicle with eight wheels including four-swing arms.

Design/methodology/approach

This vehicle is driven by distributed hydraulic motors which provide high mobility. It possesses the ability to change the posture by means of cooperation of the four-swing arms. This ensures that the vehicle can adapt to complex terrain. In this paper, the bionic mechanism, control design and steering method of the vehicle are introduced. Then, the kinematic model of the center of gravity is studied. Afterward, the obstacle surmounting performance based on a static model is analyzed. Finally, the simulation based on ADAMS and the prototype experiment is carried out.

Findings

The experiment results demonstrate that the robotic vehicle can surmount an obstacle 2.29 times the height of the wheel radius, which verifies the feasibility of this new configuration. Therefore, this vehicle has excellent uneven terrain adaptability.

Originality/value

This paper proposes a new configuration of an all-terrain robotic vehicle with four-swing arms. With simple mechanism and control algorithms, the vehicle has a high efficiency of surmounting an obstacle. It can surmount a vertical obstacle 2.29 times the height of the wheel radius.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 April 2022

Zhimin Pan, Yu Yan, Yizhou Huang, Wei Jiang, Gao Cheng Ye and Hong Jun Li

The purpose of this paper is to achieve optimal climbing control of the gas-insulated switchgear (GIS) robot, as the authors know that the GIS inspection robot is a kind of…

Abstract

Purpose

The purpose of this paper is to achieve optimal climbing control of the gas-insulated switchgear (GIS) robot, as the authors know that the GIS inspection robot is a kind of artificial intelligent mobile equipment which auxiliary or even substitute human labor drive on the inner wall of the gas-insulated metal enclosed switchgear. The GIS equipment fault inspection and maintenance can be realized through the robot manipulator on the mobile platform and the camera carried on the fuselage, and it is a kind of intelligent equipment for operation. To realize the inspection and operation of the GIS equipment pipeline without blind spots, the robot is required to be able to travel on any wall inside the pipeline, especially the top of the pipeline and both right and left sides of the pipeline, which requires the flexible climbing of the GIS inspection robot. The robot device has a certain adsorption function to ensure that the robot is fully attached to the wall surface. At the same time, the robot manipulator can be used for collision-free obstacle avoidance operation planning in the narrow operation space inside the GIS equipment.

Design/methodology/approach

The above two technologies are the key that the robot completes the GIS equipment inspections. Based on this, this paper focuses on modeling and analysis of the chassis adsorption characteristics for the GIS inspection robot. At the same time, the Denavit Hartenberg (D-H) coordinate model of the robot arm system has been established, and the kinematics forward and inverse solutions of the robot manipulator system have been derived.

Findings

The reachable working space point cloud diagram of the robot manipulator in MATLAB has been obtained based on the kinematics analysis, and the operation trajectory planning of the robot manipulator using the robot toolbox has been obtained. The simulation results show that the robot manipulator system can realize the movement without collision and obstacle avoidance. The space can cover the entire GIS pipeline so as to achieve no blind area operation.

Originality/value

Finally, the GIS inspection robot physical prototype system has been developed through system integration design, and the inspection, maintenance operation experiment has been carried out in the actual GIS equipment. The entire robot system can complete the GIS equipment inspection operation soundly and improve the operation efficiency. The research in this paper has important theoretical significance and practical application value for the optimization design and practical research of the GIS inspection robot system.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 July 2018

Zhaotian Wang, Yezhuo Li and Yan-An Yao

The purpose of this paper is to put forward a rolling assistant robot with two rolling modes, and the multi-mode rolling motion strategy with path planning algorithm, which is…

Abstract

Purpose

The purpose of this paper is to put forward a rolling assistant robot with two rolling modes, and the multi-mode rolling motion strategy with path planning algorithm, which is suitable to this multi-mode mobile robot, is proposed based on chessboard-shaped grid division (CGD).

Design/methodology/approach

Based on the kinematic analysis and motion properties of the mobile parallel robot, the motion strategy based on CGD path planning algorithm of a mobile robot with two rolling modes moving to a target position is divided into two parts, which are local self-motion planning and global path planning. In the first part, the mobile parallel robot can move by switching and combining the two rolling modes; and in the second part, the specific algorithm of the global path planning is proposed according to the CGD of the moving ground.

Findings

The assistant robot, which is a novel 4-RSR mobile parallel robot (where R denotes a revolute joint and S denotes a spherical joint) integrating operation and rolling locomotion (Watt linkage rolling mode and 6R linkage rolling mode), can work as a moving spotlight or worktable. A series of simulation and prototype experiment results are presented to verify the CGD path planning strategy of the robot, and the performance of the path planning experiments in simulations and practices shows the validation of the path planning analysis.

Originality/value

The work presented in this paper is a further exploration to apply parallel mechanisms with two rolling modes to the field of assistant rolling robots by proposing the CGD path planning strategy. It is also a new attempt to use the specific path planning algorithm in the field of mobile robots for operating tasks.

Details

Industrial Robot: An International Journal, vol. 45 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 April 2021

Wenmin Chu, Xiang Huang and Shuanggao Li

With the improvement of modern aircraft requirements for safety, long life and economy, higher quality aircraft assembly is needed. However, due to the manufacturing and assembly…

Abstract

Purpose

With the improvement of modern aircraft requirements for safety, long life and economy, higher quality aircraft assembly is needed. However, due to the manufacturing and assembly errors of the posture adjustment mechanism (PAM) used in the digital assembly of aircraft large component (ALC), the posture alignment accuracy of ALC is difficult to be guaranteed, and the posture adjustment stress is easy to be generated. Aiming at these problems, this paper aims to propose a calibration method of redundant actuated parallel mechanism (RAPM) for posture adjustment.

Design/methodology/approach

First, the kinematics model of the PAM is established, and the influence of the coupling relationship between the axes of the numerical control locators (NCL) is analyzed. Second, the calibration method based on force closed-loop feedback is used to calibrate each branch chain (BC) of the PAM, and the solution of kinematic parameters is optimized by Random Sample Consensus (RANSAC). Third, the uncertainty of kinematic calibration is analyzed by Monte Carlo method. Finally, a simulated posture adjustment system was built to calibrate the kinematics parameters of PAM, and the posture adjustment experiment was carried out according to the calibration results.

Findings

The experiment results show that the proposed calibration method can significantly improve the posture adjustment accuracy and greatly reduce the posture adjustment stress.

Originality/value

In this paper, a calibration method based on force feedback is proposed to avoid the deformation of NCL and bracket caused by redundant driving during the calibration process, and RANSAC method is used to reduce the influence of large random error on the calibration accuracy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 March 1968

J.B. QUINN

WHAT is involved in formulating a strategy? What kinds of factors must be considered in such planning? How can a management establish internal decision processes to properly…

Abstract

WHAT is involved in formulating a strategy? What kinds of factors must be considered in such planning? How can a management establish internal decision processes to properly develop and implement a viable strategy?

Details

Management Decision, vol. 2 no. 3
Type: Research Article
ISSN: 0025-1747

Article
Publication date: 6 September 2019

Vahide Bulut

The purpose of this study is to obtain the differential geometric analysis of autonomous wheel-legged robots and their trajectories on the terrain.

Abstract

Purpose

The purpose of this study is to obtain the differential geometric analysis of autonomous wheel-legged robots and their trajectories on the terrain.

Design/methodology/approach

The author uses a wheel using the osculating sphere of the curve on rough terrain. Additionally, the author expresses a triple osculating sphere wheel by taking advantage of differential geometry. Moreover, the author examined the consecutive wheel center-curves to obtain the optimum posture of a micro-hydraulic toolkit (MHT) robot.

Findings

The author examined the terrain path, which is crucial for trajectory planning in terms of the geometric perspective. The author designed the triple MHT wheel using the osculating sphere of the MHT robot trajectory by taking advantage of local differential geometric properties of this curve on the terrain. The consecutive wheel center-curves were expressed and studied based on differential geometry.

Originality/value

The author provides a novel approach for the optimum posture of an MHT robot using consecutive wheel-center curves and provides an original perspective to MHT robot and its trajectory by using differential geometry.

Details

Engineering Computations, vol. 37 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 6000